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1 Preliminaries
The population set contains all possible values generated by a set of a parameters. Con-
versely, the "sampled" set may only be a subset of the population. In statistics, we are mainly
dealing with sample sets, and base all estimation on their properties.

Given some probability distribution, we can calculate it’s mean and variance as:

µ =
n∑
i=1

pixi

V ar(x) =
n∑
i=1

pi(xi − µ)2

, where pi = f(xi). In fact, these are related to the first and second moment, where the kth
moment is given by E(xk):

µ = E(x)
V ar(x) = E(x2)− (E(x))2

. Given a sample S, we can calculate some sample statistics from it:

X̄ = 1
n

n∑
i=1

Xi

V ar(X) = 1
n

n∑
i=1

(Xi − X̄)2

, Where Xi is the ith sampled observation, n is the sample size, X̄ is the sample mean, and
V ar(X) is the sample variance. We will come to see that this method of calculating variance
is known as a "biased estimator".

1.1 Estimation
We are given a sample from a population. There are three general methods for determining
parameters which characterize the underlying distribution: moment, unbiased, and maxi-
mum likelihood methods. The moment method approach will not be covered.

1.2 Unbiased Estimation
If E[u(X1, X2, ..., Xn)] = θ for the underlying parameter theta, then u is said to be an
unbiased estimator of θ. Otherwise, u is biased. Bias can be measured by seeing how well
our estimated parameter approximates the true one (if known): Bias(θ) = θ − Eθ(T ).

Theorem 1.1. X̄ = 1
n

∑n
i=1 Xi is an unbiased estimator of θ = µ, the mean.
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Proof. To show that X̄ is an unbiased estimator, we must prove that in expectation, our
sample mean will converge to our true mean, that is: E(X̄) = E(X).

E(X̄) = E( 1
n

n∑
i=1

Xi)

= 1
n

n∑
i=1

E(Xi) = 1
n

n∑
i=1

µ

= nµ

n
= µ = E(X).

Theorem 1.2. 1
n−1

∑n
i=1(Xi − X̄)2 is an unbiased estimator of variance.

Proof.

E

 1
n− 1

n∑
i=1

(Xi − X̄)2


= E

 1
n− 1

n∑
i=1

(Xi − E(Xi)− (X̄ − E(Xi)))2


= E

 1
n− 1

n∑
i=1

((Xi − E(Xi))2 − 2(Xi − E(Xi))(X̄ − E(Xi)) + (X̄ − E(Xi))2)


= E

 1
n− 1(

n∑
i=1

(Xi − µ)2 − 2
n∑
i=1

(Xi − µ)(X̄ − µ) +
n∑
i=1

(X̄ − µ)2)


Since the last term
n∑
i=1

(X̄ − µ)2 = (X̄ − µ)2
n∑
i=1

1 = n(X̄ − µ)2,

= 1
n− 1E

 n∑
i=1

(Xi − µ)2 − 2(X̄ − µ)
n∑
i=1

(Xi − µ) + n(X̄ − µ)2

 (1)

Lemma 1.1. X̄ − µ = 1
n

∑n
i=1(Xi − µ)

Proof. Since X̄ = 1
n

∑n
i=1 Xi then

X̄ − µ = 1
n

n∑
i=1

Xi −
nµ

n

= 1
n

n∑
i=1

Xi −
1
n

n∑
i=1

µ = 1
n

n∑
i=1

(Xi − µ)
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Substituting X̄ − µ from Lemma 1 into 1:

= 1
n− 1E

 n∑
i=1

(Xi − µ)2 − 2
n

n∑
i=1

(Xi − µ)
n∑
i=1

(Xi − µ) + n(X̄ − µ)2


= 1
n− 1

nE[ 1
n

n∑
i=1

(Xi − µ)2
]
− 2n

n
E
[ 1
n

n∑
i=1

(Xi − µ)2
]

+ nE
[
(X̄ − µ)2

]
Once again by Lemma 1, the final term: nE

[
(X̄ − µ)2

]
= E

[ n
n2

n∑
i=1

(Xi − µ)2
]

= σ2

= 1
n− 1

nσ2 − 2σ2 + σ2


= 1
n− 1(nσ2 − σ2)

= 1
n− 1[σ2(n− 1)]

= σ2

Completing our proof that 1
n−1

∑n
i=1(Xi − X̄)2 is an unbiased estimator of variance.

1.3 Maximum Likelihood Estimation (MLE)
Maximum likelihood estimators start from the sample X̄ and derive the parameters θ which
maximize the probability of X̄ being sampled.

Theorem 1.3. The MLE of the mean of a normally distributed RV X = X1, X2, ..., Xn with
known variance σ2 is 1

n

∑n
i=1 Xi.

Proof. Since X is normally distributed, fX(Xi) = 1√
2πσ exp (− (Xi−µ)2

2σ2 ). The likelihood of the
set of samples X is then:

L(X1, ..., Xn) =
n∏
i=1

fX(Xi)

Note that we usually consider the log-likelihood to manipulate expressions easier. We can do
this since log is monotonically increasing and one-to-one (for bases ≥ 1) and preserves the
global extrema of our likelihood function.

ln(L(X1, ..., Xn)) = ln
n∏
i=1

( 1√
2πσ

exp (−(Xi − µ)2

2σ2 ))

=
n∑
i=1

(ln( 1√
2πσ

exp (−(Xi − µ)2

2σ2 )))

=
n∑
i=1

(−1
2 ln(2π)− ln(σ)− (Xi − µ)2

2σ2 )
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Since we wish to estimate µ, we take the partial derivative of the log-likelihood function
w.r.t µ, and set it equal to zero to solve for the extrema value.

∂ ln(L)
∂µ

=
n∑
i=1

(Xi − µ)
σ2 = 0

n∑
i=1

(Xi)− nµ = 0

µ̂MLE = 1
n

n∑
i=1

Xi

Theorem 1.4. The MLE of the variance of a normally distributed RV X = X1, X2, ..., Xn

with known mean µ = µ̂MLE is σ̂2
MLE = 1

n

∑n
i=1(Xi−µ)2, or the biased estimator of variance.

Proof. The likelihood is given by:

L(X1, ..., Xn) =
n∏
i=1

fX(Xi) = ( 1
σ
√

2π
)n exp

(
− 1

2σ2

n∑
i=1

(Xi − µ)2
)

Let L = lnL(X1, ..., Xn), the log-likelihood of L. Then

L = n ln 1
σ
√

2π
− 1

2σ2

n∑
i=1

(Xi − µ)2 = −n ln σ − n

2 ln 2π − 1
2σ2

n∑
i=1

(Xi − µ)2

Since we are looking for extrema of σ2, we take the partial ∂L
∂σ2 and set it equal to zero.

∂L
∂σ2 = −n2σ2 − 0 + 1

2σ4

n∑
i=1

(Xi − µ)2 = 0

n

2σ2 = 1
2σ4

n∑
i=1

(Xi − µ)2

σ2 = 1
n

n∑
i=1

(Xi − µ)2, then using our known mean µ̂MLE:

σ̂2
MLE = 1

n

n∑
i=1

(Xi − µ̂MLE)2

2 Linear Regression

2.1 Introduction
Linear regression is the process of fitting a model that is linear in its parameters. That is,
Y = β0 + β1X1 + β2X2 + ... + βnXn, and we solve for parameters β to minimize some loss
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function (e.g. mean squared error). As a remark, this means that we can fit functions not
completely linear if we square certain inputs before applying our regression formula. The
resultant model will still be linear in the parameters.

If we have more than one data point, we can use matrix form to describe the system:

Y = Xβ

, where X =


x11 x12 . . . x1n
x21 x22 . . . x2n
... ... . . . ...

xm1 xm2 . . . xmn

 , Y = [Y1, Y2, ..., Ym]T , and β = [β1, β2, ..., βn]T

That is, X is an m × n matrix representing m data points, with each data point having n
predictors. Then we have m predictions (stored in Y ) and n β-parameters to fit.

The standard regression problem is fitting f(x) in Y = f(x) + ε, where ε is noise in the
data usually assumed to be ε ∼ N (0, 1).

Let us derive our parameters β. We begin with the assumption that we want to minimize∑m
i=1 ε

2
i = (yi − ŷi)2 the squared of the sum of the residuals (RSS). Assuming we fit a model

perfectly, then the only error left will be ε2 from our original data Y = Xβ + ε. This is
irreducible error. Rewriting,

min
β

εT ε = (Y −Xβ)T (Y −Xβ)

min
β

εT ε = Y TY − 2βTXTY + βTXTXβ

∂εT ε

∂β
= −2XTY + 2XTXβ = 0, then

XTXβ = XTY

and β = (XTX)−1XTY

So we can estimate β using the projection matrix (XTX)−1XT .

2.2 Simple Linear Regression
Consider the simple case yi = a+ bxi + εi for i ∈ [1, n] (a is essentially b0). Let

S =
n∑
i=1

ε2 =
n∑
i=1

(yi − q − bxi)2

From here, we can derive explicit expressions for estimations of â, b̂.

∂S

∂a
= 2

n∑
i=1

(yi − a− bxi)(−1) = 0

n∑
i=1

yi − na− b
n∑
i=1

xi = 0
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1
n

∑
i=1

n = a+ bx̄ , then â = ȳ − b̂x̄

For b̂, we have
∂S

∂b
= −2

n∑
i=1

(yi − a− bxi) = 0

n∑
i=1

xiyi −
n∑
i=1

xi(
n∑
i=1

yi − b
n∑
i=1

xi) = b
n∑
i=1

x2
i

Note:
cov(x, y) = 1

n

n∑
i=1

(xi − x̄)(yi − ȳ)) = 1
n

n∑
i=1

xiyi − x̄ȳ

and that as n −→ inf, cov(x, y) = E(XY )− E(X)E(Y ).

Theorem 2.1. corro(x, y) = cov(x,y)
(var(x)var(y))2 , b̂ = cov(x,y)

var(x) .

2.3 SLR: Step by Step
We list out some steps to perform simple linear regression.

1. Fit the regression coefficients â, b̂ using definitions derived in [2.2]. Let the i’th residual
be εi = yi − ŷi, which measures our fit at the i’th data point.

2. Create a hypothesis test for b̂ to test for regression. Let bc be some constant and true
b value. Then we set up the test as:

H0 : b̂ = bc

H1 : b̂ 6= bc

We create the test statistic T0 = b̂−bc

se(b̂) , where squared error:

se(b̂) =

√√√√√
∑n

i=1 ε
2
i

n−2∑n
i=1(xi − x̄)2

The test statistic T0 follows a t-distribution with n− 2 degrees of freedom where n is
the total number of data points we used when fitting b̂. We test significance, accepting
the null hypothesis if

−tα/2,n−2 < T0 < tα/2,n−2

If we set bc = 0, we are essentially testing for significance of regression and failing to
reject the H0 implies the data cannot be fit with a linear model.

3. We also test for the intercept â using T0 = â−ac

se(â) where

se(â) =

√√√√∑n
i=1 ε

2
i

n− 2

(
1
n

+ x̄2∑n
i=1(xi − x̄)2

)

Testing for the same t-distribution range as b̂.
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2.4 Testing Case Study: Risk Factors for Cardiovascular Disease
We obtain data from the Framingham Heart Study. It includes n = 4434 participants who
completed one of the regularly scheduled examinations from 1956 – 1968. The following
table shows variable names, as they appear in the csv, along with brief descriptions and
coding details for each variable

Variable Name Description Coding
AGE Age at exam, in years 32-70
TOTAL CHOL Total cholesterol, mg/dL 107-696
SBP Systolic blood pressure, mmHg 83.5-295
DBP Diastolic blood pressure, mmHg 48-142.5
BMI Body mass index, kg/meters2 15.54-56.8
CIGS PER DAY Number of cigarettes smoked per day 0-70
GLUCOSE Serum glucose mg/dL 40-394
HEART RATE Heart rate, beats/minute 44-143
CVD Cardiovascular disease over 24 year follow-up 0=no, 1=yes
HYPERTENSION Hypertension over 24 year follow-up 0=no, 1=yes

Exercise 1. Is hypertension associated with CVD? Carry out an appropriate test. Include
the appropriate hypotheses, test statistic value, p-value, and conclusion.
Proof. We must perform a χ2 test for significance between two categorical variables. We lay
out our hypotheses:

H0 : CVD and HYPERTENSION are independent variables
H1 : CVD and HYPERTENSION are dependent variables

Running the associated R code snippit:

## heart_study.R
data = data<-read.csv(file.choose(),header=TRUE)
# We have two categorical variables
data$CVD <- as.factor(data$CVD)
data$HYPERTENSION <- as.factor(data$HYPERTENSION)

chi2 = chisq.test(data$CVD, data$HYPERTENSION)
c(chi2$statistic, chi2$p.value)
...

X-squared
1.230504e+02 1.359530e-28

Since our p = 1.359530e − 28 < 0.05, we reject our null hypothesis and conclude that the
variables CVD and HYPERTENSION are dependent on each other.
Exercise 2. Plot BMI vs DBP with different plotting symbols for the two CVD groups.
Describe the relationship between BMI and DBP. Does CVD appears to have an effect on
these variables?
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Proof. R Code used to plot the data:

data = data<-read.csv(file.choose(),header=TRUE)
...
plot(data$BMI ~ data$DBP,

xlab = "Body mass index, kg/meters2",
ylab = "Diastolic blood pressure, mmHg",
pch = as.numeric(data$CVD)
col = c("blue", "green")[as.numeric(data$CVD)])

There seems to generally be a linear relation between BMI and DBP. However, due to
the distribution of the CVD’s through all areas of the plot, it does not have discernable
influence on the other two variables.

2.5 Linear Regression Case Study: Optical Gravitational Lensing
We obtain data (linked) from the Optical Gravitational Lensing Experiment (Ogle-II). Stars
in this data set have been identified as Cepheid variables located in the Small Magellenic
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Cloud (SMC). Two types of Cepheids are included here, fundamental mode (FU) and first
overtone (FO). Measurements include the logarithm of the periods of variability and stellar
magnitudes at various wavelengths of light. The first column contains ID’s of these stars.
For this problem we are interested in the following quantities:

MW: an extinction-free measure of stellar magnitude (since these stars are all essentially
the same distance from Earth, this is directly related to their luminosity).

Type: type of Cepheid, FU or FO. These classifications were obtained by a fourier
analysis of the light curve and so may be wrong.

VI: a color index (difference in brightness between visual and infra-red).
logPeriod: log base 10 of the period of variability.

We first fit a full linear regression model, taking into account all given variables:

# stardata.R
con = url("http://www.utdallas.edu/~ammann/stat6341scripts/OgleLMCSMCWIII.RData")
load(con)
data = OgleLMCSMCW.df

# full model
Full =

lm(data$MW~data$Galaxy*data$logPeriod+data$Type*data$logPeriod+data$Type*data$VI+
data$Galaxy*data$VI)

Next, we do outlier removal according to: |rstudent| and dffits:

# Outlier removal
# get number of predictors, should be 9 including intercept
p = length(Full$coefficients)
# remove points with rstudent value > 3
rstudent = (abs(rstudent(Full)))
count <- 1
for (val in rstudent){

print(val)
print(count)
if (val > 3){

data <- data[-c(count), ]
} else {

count = count + 1
}

}

# remove points with > 2 * sqrt((p+1)/(n-p-1)) dffits value
dffits = (dffits(Full))
count <- 1
for (val in dffits){

print(val)
print(count)
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if (val > 2 * sqrt((p+1)/ (3991-p-1)))
{

data <- data[-c(count), ]
} else {

count = count + 1
}

}

We have reduced the number of data points from 3991 −→ 3084. We refit our model and
produce summary results:

# re-fit model on data without outliers
Full = lm(data$MW~data$Galaxy*data$logPeriod+ data$Type*data$logPeriod+

data$Type*data$VI+ data$Galaxy*data$VI)
summary(Full)
...
Residuals:

Min 1Q Median 3Q Max
-0.53439 -0.05710 0.00308 0.05826 0.50655

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.09165 0.02331 -132.607 < 2e-16 ***
data$GalaxySMC -0.18544 0.02607 -7.113 1.41e-12 ***
data$logPeriod -3.42603 0.02230 -153.646 < 2e-16 ***
data$TypeFU 0.52854 0.02476 21.351 < 2e-16 ***
data$VI -0.03500 0.03263 -1.072 0.284
data$GalaxySMC:data$logPeriod -0.27213 0.01911 -14.236 < 2e-16 ***
data$logPeriod:data$TypeFU 0.14371 0.02110 6.812 1.15e-11 ***
data$TypeFU:data$VI -0.06362 0.03934 -1.617 0.106
data$GalaxySMC:data$VI 0.64221 0.03991 16.093 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1145 on 3075 degrees of freedom
Multiple R-squared: 0.9859, Adjusted R-squared: 0.9859
F-statistic: 2.696e+04 on 8 and 3075 DF, p-value: < 2.2e-16

Since we obtain a very high R2 value, we check our model assumptions by showing the
QQ-plot (quantile-quantile).
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It seems our
data follows a heavy-tail distribution after outlier removal.

Perfoming a shapiro wilks test with

shapiro.test(data$MW)
...

Shapiro-Wilk normality test

data: data$MW
W = 0.96891, p-value < 2.2e-16

verifies that with low p-value, MW, which we are attempting to predict, is normally dis-
tributed.

Continuing, we perform cross validation, sampling train/test data with a 70/30 split.

SPSE = 0
for (i in 1:2000){

## 70% of the sample size
smp_size <- floor(0.7 * nrow(data))

train_ind <- sample(seq_len(nrow(data)), size = smp_size)
* need to sample without replacement

train <- data[train_ind, ]
test <- data[-train_ind, ]

Full = lm(MW~Galaxy*logPeriod+ Type*logPeriod+ Type*VI+ Galaxy*VI, data=train)
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SPSE = SPSE + mean((data.frame(test$MW)- predict.lm(Full,
newdata=list(X=test))) ^ 2)

}

# Find MPSE
MPSE = SPSE / 2000
print(MPSE)
...
[1] 0.01285563

Obtaining a mean square predicted error (MPSE) of 1.843719. We repeat this for each
of the models, obtaining the MPSE for each:

Model MPSE Adj R2

Full (PLC) 0.01285563 0.9859
GalVI (PLC) 0.01284548 0.9859
VI (PLC) 0.01873347 0.9797
Gal (PL) 0.01442136 0.9842
Gal0 (PL) 0.01465222 0.984
Base (PL) 0.0187344 0.9797
PL (PL) 0.08138108 0.9123

We can clearly see the correlation between model complexity and expressibility with
the R2 column of the table. Among the PLC models, GalVI takes the crown with high
expressibility and the best MPSE fit. Among the PL models, Gal seems to be a reasonable
balance, having the lowest MPSE as well as the highest Adjusted R2. There does not seem
to be any advantage to using a PLC model over a PL one, given that the MPSE of the PL
model is clearly up to par with that of the PLC models.

Refitting our full, outliers removed, data with the best PL model (Gal), we obtain an
Adjusted R2 of 0.9842. Here is a comparison with the methods published in the paper:
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the black regression line corresponds to the fitted Gal line, which does not line up since
it is not only dependent on the logPeriod. The four other lines are published results.
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