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Binary & Multiclass Classification

Slides made by Julian and Sid, based on some slides by Shaddin

Binary classification: simplest type of learning problem.

Domain X , label set Y = {0, 1}.

What is learnable?

Classes of finite VC dimension.
Known since the ‘80’s, [Blu+89].

How to learn?

Empirical risk minimization (ERM).

Multiclass classification:

Not so simple...

Domain X , arbitrary label set Y (perhaps infinite).
What is learnable?

Classes of finite DS dimension [Bru+22].
Proven just last year (at FOCS)!

How to learn?

Not clear: ERM fails for learnable problems [DS14].

1 / 29



Binary & Multiclass Classification

Slides made by Julian and Sid, based on some slides by Shaddin

Binary classification: simplest type of learning problem.

Domain X , label set Y = {0, 1}.
What is learnable?

Classes of finite VC dimension.
Known since the ‘80’s, [Blu+89].

How to learn?

Empirical risk minimization (ERM).

Multiclass classification:

Not so simple...

Domain X , arbitrary label set Y (perhaps infinite).
What is learnable?

Classes of finite DS dimension [Bru+22].
Proven just last year (at FOCS)!

How to learn?

Not clear: ERM fails for learnable problems [DS14].

1 / 29



Binary & Multiclass Classification

Slides made by Julian and Sid, based on some slides by Shaddin

Binary classification: simplest type of learning problem.

Domain X , label set Y = {0, 1}.
What is learnable? Classes of finite VC dimension.

Known since the ‘80’s, [Blu+89].

How to learn? Empirical risk minimization (ERM).

Multiclass classification:

Not so simple...

Domain X , arbitrary label set Y (perhaps infinite).
What is learnable?

Classes of finite DS dimension [Bru+22].
Proven just last year (at FOCS)!

How to learn?

Not clear: ERM fails for learnable problems [DS14].

1 / 29



Binary & Multiclass Classification

Slides made by Julian and Sid, based on some slides by Shaddin

Binary classification: simplest type of learning problem.

Domain X , label set Y = {0, 1}.
What is learnable? Classes of finite VC dimension.

Known since the ‘80’s, [Blu+89].

How to learn? Empirical risk minimization (ERM).

Multiclass classification:

Not so simple...

Domain X , arbitrary label set Y (perhaps infinite).

What is learnable?

Classes of finite DS dimension [Bru+22].
Proven just last year (at FOCS)!

How to learn?

Not clear: ERM fails for learnable problems [DS14].

1 / 29



Binary & Multiclass Classification

Slides made by Julian and Sid, based on some slides by Shaddin

Binary classification: simplest type of learning problem.

Domain X , label set Y = {0, 1}.
What is learnable? Classes of finite VC dimension.

Known since the ‘80’s, [Blu+89].

How to learn? Empirical risk minimization (ERM).

Multiclass classification:

Not so simple...

Domain X , arbitrary label set Y (perhaps infinite).
What is learnable?

Classes of finite DS dimension [Bru+22].
Proven just last year (at FOCS)!

How to learn?

Not clear: ERM fails for learnable problems [DS14].

1 / 29



Binary & Multiclass Classification

Slides made by Julian and Sid, based on some slides by Shaddin

Binary classification: simplest type of learning problem.

Domain X , label set Y = {0, 1}.
What is learnable? Classes of finite VC dimension.

Known since the ‘80’s, [Blu+89].

How to learn? Empirical risk minimization (ERM).

Multiclass classification:

Not so simple...

Domain X , arbitrary label set Y (perhaps infinite).
What is learnable? Classes of finite DS dimension [Bru+22].

Proven just last year (at FOCS)!

How to learn? Not clear: ERM fails for learnable problems [DS14].
1 / 29



Binary & Multiclass Classification

Slides made by Julian and Sid, based on some slides by Shaddin

Binary classification: simplest type of learning problem.

Domain X , label set Y = {0, 1}.
What is learnable? Classes of finite VC dimension.

Known since the ‘80’s, [Blu+89].

How to learn? Empirical risk minimization (ERM).

Multiclass classification: Not so simple...

Domain X , arbitrary label set Y (perhaps infinite).
What is learnable? Classes of finite DS dimension [Bru+22].

Proven just last year (at FOCS)!

How to learn? Not clear: ERM fails for learnable problems [DS14].
1 / 29



PAC Learning

Learning problem defined by a hypothesis class H ⊆ YX .

Each h ∈ H is simply a function h : X → Y (think a neural network,
where H is the class of all NNs).

1. Nature selects “ground truth” h∗ ∈ H and distribution D over X .
2. Learner receives sample S =

(
(x1,h∗(x1)), . . . (xn,h∗(xn))

)
, for

xi ∼ D.
3. Learner outputs function f with small error

LD(f) = Px∼D
(
f(x) ̸= h∗(x)

)
.

PAC Learning
How many samples are needed to output a function of error ≤ ϵ with
probability ≥ 1− δ over the randomness of S?
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Empirical risk minimization

Quintessential learning algorithm: empirical risk minimization (ERM).

Learner A such that A(S) ∈ H and A(S) has perfect performance
on sample S = (xi, yi)i∈[n] (realizability assumption).

Intuition: true error LD(f) is unknowable to A. Natural proxy is
empirical risk

LS(f) =
1
n

n∑
i=1

|f(xi)− yi|.

One kind of proper learner: learner that only outputs hypotheses
in H.
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Some Relevant Background

Binary classification: ERM characterizes learning.
I.e., ERM is near-optimal for all learnable problems.

Multiclass classification: there are learnable problems where ERM
fails. In fact, any proper learner fails [DS14]!

To learn H, we need to use functions outside of H.

High-level question
What is the “simplest” learning algorithm that learns all multiclass
problems possible?
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Launching Point: “Vanilla” SRM

Structural Risk Minimization
Choose a regularizer ψ : H → R quantifying hypothesis
complexity.
Given labeled training data S, output h ∈ H minimizing

LS(h) + ψ(h).

Generalizes ERM with inductive bias for “simplicity” (user defined).
Like ERM, gives a proper learner.

By [DS14], must fail for some learnable classification problems.

Question
What is the minimal augmentation of SRM that allows it to learn all
(learnable) multiclass problems?
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Relaxation 1: Local Regularization

Geometrically: h ∈ H can be “complex” at places, “simple” at
others.
Local Regularizer ψ(h, x): “complexity” of h at x.
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Relaxation 1: Local Regularization

Key obstruction: SRM is inherently proper, phrased as an
optimization proper over H.

How to be improper while still optimizing over H?

Solution: allow regularizer to depend on test point.
A(S) “glues” actions of different h ∈ H across X .
We call this a “local regularizer.”

Formally, ψ : H×X → R≥0,

A(S)(x) ∈ {h(x) : h ∈ argminH LS(h) + ψ(h, x)}.

Intuition: ψ is a collection of local preferences on H, rather than
a single global preference on H.
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Relaxation 1: Local Regularization

Theorem (Informal)
Even local regularization fails on learnable multiclass problems.
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Relaxation 2: Unsupervised Learning of Regularizer

Model complexity can be “distribution dependent”

h1 varies simply over A, but with complexity over B.

h2 does the opposite.

For x ∈ A ∩ B, which of h1 and h2 is simpler?

Depends on whether data distribution supported on A or B...

Unsupervised learning stage: derive ψ from unlabeled examples.
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Unsupervised Local SRM

Structural Risk Minimization (Unsupervised, Local)
Given unlabeled data SX, learn local regularizer ψ : H×X → R

Given labeled data S, test point x, find h ∈ H minimizing

LS(h) + ψ(h, x)

and output prediction h(x).

Theorem
Every realizable classification problem with countably many labels
admits near optimal (factor 2) local unsupervised SRM (deterministic).

BUT loses factor 2, somewhat hard to interpret, no extension to
agnostic.
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Result: Randomized SRM

Theorem
Every (realizable or agnostic) classification problem with finitely many
labels admits exactly optimal local unsupervised SRM (randomized).

Admits three related interpretations:

Interpretation 3: Maximum Entropy Principle
Subject to consistency with data, choose distribution with max
entropy.

Retains as much randomness as possible from learned prior ρ over
predictions, subject to consistency with data.
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Building Block: One-inclusion Graph (OIG)

Transductive Learning Model
n adversarially chosen examples
Exactly one label missing chosen uniformly at random (test point)
“Fill in the blank”

Appears more fine grained than i.i.d. model (sample by sample)
However, essentially equivalent to PAC model

log(1/ϵ) difference in sample complexity

OIGs provide a mathematical handle on transductively learning H.
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One-inclusion Graph

The one-inclusion graph of H on S ∈ X n has:

Vertex set H|S.
Hyperedges group hypotheses that agree on n− 1 points.

Key observation 1: learner ≡ orientation of edges.

For each observation, pick consistent hypothesis
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Learners and OIGs

Learner ≡ orientation of the graph.

For a given test point, various hypotheses consistent with the
data.
Choose one by directing the edge.
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Learners and OIGs

Thus, a learner corresponds exactly to an orientation of the entire OIG
(for each possible S ∈ X n).

Key observation 2:

Good learner (error ≤ ϵ) ⇐⇒ outdegrees ≤ nϵ

⇐⇒ indegrees ≥ n · (1− ϵ)
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Bipartite Perspective

From the OIG G, we can derive a bipartite variant.
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Bipartite OIGs

Hyperedges (observations) on left, hypotheses on right

Edge if hypothesis is consistent with observation
Degrees: n on RHS, up to |Y| on left
Learner ≡ assignment of LHS (matching each LHS node)
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Bipartite Perspective: Learner ≡ Assignment
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Bipartite Perspective: Learner ≡ Assignment

Error ≤ ϵ ⇐⇒ each node on RHS matched ≥ n · (1− ϵ) times
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Bipartite OIGs

Progress!
Essentially converts learning into a matching problem, in the
wheelhouse of graph theory / combinatorial optimization!
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Deterministic SRM from OIGs

What does an SRM look like in terms of the bipartite OIG?

Complexity measure ψ defines total order on the right
Each left node picks its smallest (simplest) neighbor in terms of ψ
Unsupervised, local: baked into OIG

Such “greedy” policies typically do well for matching, up to factor 2.

Learner implicit in [DS14] is such a “greedy” learner, hence SRM.
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Randomized SRM from Bipartite OIGs

Something else we know about matching: dual variables guide you to
the optimum! But for which primal?

max entropy(pM)
s.t. M : LHS→ RHS

degM(h) ≥ (1− ϵ∗)n ∀h ∈ H

Max entropy programs well-studied in statistical physics,
optimization, approximation algorithms.
Hard-coded to have optimal misclassification rate ϵ∗.
Dual exhibits product structure: Pr[solution] ∝

∏
duals

Interpretations 2 and 3: SRM and Max Entropy
Normalize duals of max entropy program to form prior ρ on H.
Each e ∈ LHS chooses ρ′ over neighbors minimizing DKL(ρ′|ρ).

Retain as much of the entropy of ρ as possible.
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Max entropy programs well-studied in statistical physics,
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Companion Result: Hall Complexity

Bipartite perspective allows us to characterize optimal error rate
ϵ(n) using Hall’s theorem [Philip Hall ’35].
Wrinkle: Hall’s theorem fails for infinite graphs.
But holds when the side you want to match has finite degrees
[Marshall Hall ’48], which is true for us!
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Companion Result: Agnostic OIGs

OIGs model realizable learning, we extend to agnostic.

Extend RHS to “Hamming cube”, i.e., Yn.
Edges group strings agreeing in n− 1 places.

Assignments correspond to agnostic learners.

Discount matching requirements by Hamming distance from H.

Hall complexity extends naturally, as does our randomized
learner.
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Conclusion

We should that our relaxation of SRM is “minimal.”

Removing locality gives rise to proper learners, which must fail.

We show some dependence of ψ on training data is necessary.

BUT can’t rule out that size of training data suffices.

Conjecture
Local regularizers which depend only on the size of the training data
cannot learn all learnable classification problems.
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Future Work

Extend from ℓ0−1 to more general loss functions.

Understand gaps between deterministic and randomized learners
(realizable and agnostic).

Resolve conjecture on local size-based regularizers.
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