Fairness in Matching under Uncertainty Siddartha Devic (USC), David Kempe (USC), Vatsal Sharan (USC), Aleksandra Korolova (Princeton)

@sid_devic, @korolova

Motivation: Two-Sided Marketplaces

- Two-sided marketplaces are increasingly relevant
- e.g., assigning students to schools, users to advertisers, applicants to job interviews, etc.
- Participants in the marketplace:
 - Individuals (ride-hailers, job candidates, social media users)
- Resources (drivers, jobs, ads)
- How can we consider and optimize fairness desiderata in these complex systems, often in conflict with utility?

 Importantly, ML algorithms often output distributions over merit, scores, fitness, etc.

Axioms for Fair Decision Making

- Axiom 1 (Full information, no uncertainty): Always pick the candidate with greater merit.
- Axiom 2 (Uncertainty present): Make randomized decision proportional to possible futures implied by uncertainty.

Tradeoffs Between Utility and Fairness

- Axiom 2 is often in conflict with utility: in hiring, one utility maximizing solution is to always select Alice • In contrast, fair solution selects Alice w.p. 0.8 • We allow a multiplicative *relaxation* of fairness in order to
- tradeoff with utility: call this ϕ -fair for $\phi \in [0,1]$.

Prob. Alice hired $\geq \phi \cdot$ Prob. Alice more qualified

Prob. Bob hired $\geq \phi \cdot$ Prob. Bob more qualified

Application: Two-sided Marketplaces

((
Student	GPA	Interview	Work		(
		Score	History		
x_1	3.0	excellent	3		(
x_2	3.5	poor	2	ML Algorithms/	
x_3	4.0	good	3	Algorithm/	(
(a) Observations				Domain Experts	

(a) Observations

Inputs:

(1) Deterministic preferences over of students over jobs;

(2) Merit distributions / estimates from each job for each student

Output: Randomized fair matching

Fairness is w.r.t. to "possible futures" where we sample merits for each candidate and compute a stable match.

References [1]: A. Singh, D. Kempe, and T. Joachims. Fairness in ranking under uncertainty. In Proc. 35th Advances in Neural Information Processing Systems, pages 11896–11908, 2021. [2]: Lukáš Brožovský and Václav Petříček. Recommender system for online dating service. In Proc. Znalosti, pages 29–40, 2007. [3] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. S. Zemel. Fairness through awareness. In Proc. 3rd Innovations in Theoretical Computer Science, pages 214–226. ACM, 2012

An Approach Based on Possible Futures

- in possible futures
- in possible futures

Theoretical Results

Theorem 2 (Informal): The analysis of our method is tight for both fairness and utility.

Empirical Result

 Ours vs. Thompson sampling baseline on [2]. ਤੁੱ 1,200-We observe a utility gain for all levels of ϕ , even at $\phi = 1$ (full fairness)!

PRINCETON UNIVERSITY

(Which of Alice / Bob is more qualified in each of these futures)

• Singh et al.: Prob. to select Alice / Bob in present \geq prob. Alice / Bob more qualified in possible futures (select .80 / .20)

• Run a Linear Program to maximize utility for $\phi \in [0,1]$. • However, we can only **estimate** the distribution over matchings in possible futures through sampling.

Theorem 1 (Informal): Running our LP using a sampled ϵ close estimate of possible futures achieves $\left(\frac{1}{\phi n\epsilon + 1}\right)$ -approx. of max utility and $\left(\frac{\phi\left(1 + \frac{\epsilon}{2}\right)}{n\epsilon + 1}\right)$ -fairness relative to the LP run with the true possible future

Key Results

• Axiomatize a notion of *individual fairness* in two-sided marketplaces which respects the uncertainty in the merits. • Design a linear programming framework to find fair utility-maximizing distributions over allocations. • Prove that LP is robust to approximate estimations of the uncertain merit distributions, a key property in combining the approach with ML techniques. • Verify the method empirically by designing an experiment in a two-sided market derived from a dating app.