
Convex Functions for Reinforcement Learning

Siddartha Devic
The University of Texas at Dallas

800 West Campbell Rd
Richardson, Texas 75080

Abstract

Deep Q-learning and its variants yield state-of-the-art meth-
ods in many reinforcement learning benchmarks and tasks.
However, deep Q-networks have the limitation that, during
prediction, they require maximizing a non-convex function.
Although recent work attempts to ameliorate this by modi-
fying neural networks to instead approximate convex func-
tions, we instead turn to the field of convex optimization to
directly learn functions without the need for neural networks.
We introduce a kernel based method to learn a piecewise lin-
ear convex function as a Q-value approximator. Due to the
convexity of the learned function, we can optimize over the
input state to determine the globally optimal action and are
currently working to achieve competitive performance on a
variety of reinforcement learning tasks.

Related Work
Deep Q-learning is a popular reinforcement learning (RL)
paradigm where neural networks are utilized to approximate
the Q-value of a state-action pair, Q(s, a). The neural net-
work is utilized as a function approximator in an attempt to
learn the value, i.e., the optimal reward, of state-action pairs.
During training, Q-values are updated according to the Bell-
man optimality condition:

Q(s, a) = r + γmax
a′

Q(s′, a′).

In practice, it is not clear that using neural networks as Q-
value function approximators is optimal since the maximiza-
tion procedure for choosing the best possible action in a
given state is non-convex. Motivated by this, (Amos, Xu, and
Kolter 2017) introduce input convex neural networks (IC-
NNs). Since ICNNs are defined as the composition of con-
vex activation functions and non-negative affine functions,
they are convex in the input. The authors utilize this to find
the best action given a fixed state, ensuring that they arrive
at the maximal Q-value during training and inference.

I implemented and replicated the RL and structured pre-
diction experiments done by (Amos, Xu, and Kolter 2017)
for fully and partially input convex neural networks (ICNNs

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

& PICNNs). ICNNs specify the network weights to be pos-
itive along paths from both the input state and action vector,
while PICNNs need positive weights only from the action
vector input, given that the action is what we are attempting
to optimize over. I utilized Tensorflow to create the ICNN
DQNs, with a projection based method to learn the weights
of the neural network. I evaluated both methods on a variety
of RL tasks from OpenAI Gym (Brockman et al. 2016). On
the structured prediction side, I implemented the method for
facial completion on the Olivetti dataset.

Importantly, I obtained empirical evidence that training
ICNNs as Q-value function approximators in the context
of RL is practically challenging and does not have conver-
gence guarantees: we observed that the learned fully ICNN
Q-value function approximator can diverge to arbitrarily bad
fits depending on choices of the hyperparameters. These re-
sults motivated us to seek a new convex function approxi-
mation scheme independent of ICNNs.

Fitting Convex Functions
ICNNs are simply the composition of positive affine func-
tions and convex activation functions. If we fix the activation
function to be any piecewise linear function, e.g., ReLUs,
then ICNNs reduce to a composition of positive piecewise
linear functions. Therefore, to directly learn a convex func-
tion similar to ICNNs, it is natural to study convex piecewise
linear functions. In particular, we are interested in under-
standing how well we can fit convex piecewise linear func-
tions of the form:

f(x) = max{aT1 x+ b1, . . . , a
T
Lx+ bL}.

Finding the best piecewise linear function that approximates
a finite point set is framed as a convex optimization prob-
lem in (Boyd and Vandenberghe 2004). I implemented this
in Python with the package cvxpy by solving a quadratic
program.

However, using simple two layer neural networks as
function approximators easily outperforms the best con-
vex piecewise linear function on simple regression datasets.
Therefore, I extended the algorithm and implemented meth-
ods to compute the difference of an arbitrary number of
convex functions. With this new algorithm, I was able to



learn a set of convex piecewise linear functions whose differ-
ence could outperform simple neural networks on a variety
of UCI regression datasets. Although practically effective,
learning a difference of piecewise functions is intractable for
many real-time applications we may be interested in, such as
RL. Furthermore, since a difference of convex functions is
not necessarily convex, we have not achieved our goal of
allowing for efficient global minimization.

Instead, we explored learning the best convex piecewise
linear function using an iterative method. We begin with the
lower convex envelope of the data, then shift the anchors up
through an efficient gradient descent update scheme which
maintains convexity of the function. I debugged and tested
an implementation of this method on a variety of regression
datasets, comparing it against the previous methods. After
experimenting, I found that this method learns a function
that can oftentimes outperform the other methods on a held
out test set due to neural networks overfitting and multi-
function fitting being computationally inefficient. However,
since we are in fact learning the best convex piecewise affine
function, our solution can only be considered “good” if we
assume that the data we are attempting to fit lies in some
convex position. In datasets where the data clearly lie in non-
convex positions, neural networks usually perform the best
given that they are universal function approximators which
can learn arbitrary functions.

Kernel Methods and Hyperplanes
Since the restriction that our training data points lie in con-
vex position is quite strict, we extend our algorithm to work
with kernels. With high probability, points in Gaussian ker-
nel space lie in convex position since there are effectively in-
finitely many dimensions for the data to be distributed along.
Therefore, if we frame our optimization problem in terms of
inner products of pairs of training data points, we can com-
pute our functional fit in an arbitrary kernel space.

Preliminary results indicate that we can in fact learn com-
plicated and potentially non-convex functions in the input
space due to the expressivity of the kernel. Furthermore, we
can find global optima of these functions since our proce-
dure learns a convex function in the lifted space. Our algo-
rithm learns a set of points whose convex hull determines
the function. However, the convex hull is not determined ev-
erywhere in kernel space. When a new point is sampled that
lies outside our hull, our function is not well defined. To fix
this, we extend our algorithm to learn an associated hyper-
plane with each point in our lower envelope set. The convex
function is then defined as the pointwise maximum of the
set of hyperplanes across each anchor of our lower convex
envelope.

Convex Function Fitting for Reinforcement
Learning

We use our kernel piecewise convex linear function as a drop
in approximator for the Q-value function in deep Q-learning.
Similarly to (Amos, Xu, and Kolter 2017), we can explic-
itly optimize over our maintained function at inference time.
Note that since we are attempting to choose the action which

maximizes the Q-value given a fixed state, we assume the Q-
value function is concave and instead fit our convex function
to the negative Q-value function.

I ran simulations of our method on a simple RL environ-
ment where the agent attempts to move to the corner of a
two dimensional square. After working with our collabo-
rators on debugging our method, we were able to learn a
piecewise convex function in kernel space that correctly rep-
resents the Q-value function for the problem. I also ran pre-
liminary simulations of our method on a variety of OpenAI
Gym reinforcement learning tasks.

Although the initial results are promising, there is room
for improvement in a variety of areas. The current imple-
mentation of our algorithm is inefficient and has no paral-
lelization. In the coming months, I plan to parallelize the op-
timization procedures required for each batch Bellman up-
date given to our method by experience replay sampling, a
common reinforcement learning technique. In parallel, our
collaborators have proved the convergence of our method in
fixed finite dimensions under somewhat restrictive assump-
tions. With more theoretical work, we hope to obtain con-
vergence/correctness guarantees when our method is used as
a drop-in function approximator for reinforcement learning,
unlike in deep-q learning or in ICNNs. However, it is not
clear that we can obtain the same convergence guarantees
when working in, for example, Gaussian kernel space.

Although our algorithm still needs improvements regard-
ing runtime and performance, it is a promising first step in
applying more traditional methods from convex optimiza-
tion to reinforcement learning that may overcome issues of
convergence and correctness that are challenging to establish
for current deep Q-learning approaches.

Timeline
• 12/31/19 — Verify correctness and complete paralleliza-

tion of optimization procedures
• 3/31/20 — Finish preliminary and complex reinforcement

learning experiments on more challenging tasks.
• 6/31/20 — Revisit convergence guarantees in arbitrary

lifted spaces.

References
Amos, B.; Xu, L.; and Kolter, J. Z. 2017. Input convex
neural networks. In Precup, D., and Teh, Y. W., eds., Pro-
ceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning
Research, 146–155. International Convention Centre, Syd-
ney, Australia: PMLR.
Boyd, S., and Vandenberghe, L. 2004. Convex Optimization.
New York, NY, USA: Cambridge University Press.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.


