
Digitally Representing Physical Objects for Collision Avoidance in Virtual Reality
Siddartha Devic, Alec Moore, James Eubanks, Chengyuan Lai, Dr. Ryan P. McMahan*

The University of Texas at Dallas, FIVE Lab

I. Introduction

Relatively inexpensive virtual reality (VR) headsets have allowed for 
unprecedented consumer participation in the sector. However, one problem 
that the typical consumer may face is the lack of a large open play area for 
tracking. Tables, chairs, even the pillars of a house may be occluding and 
taking up valuable meters in the tracked space.

By creating a way to digitally represent physical objects in a tracked space, 
the user will be able to expand and keep obstacles within that tracked space. 
As the user draws closer the digital representation of the object, the digital 
object will appear to fade into view, and a simple wireframe outline of the 
selected physical object will become visible.

The greatest problem in implementing this solution was in fact user selection: 
How does the user select or “trace” the physical object regardless of visual 
feedback? The initial idea was the “Box Method”, described below. Eventually, 
a more efficient and intuitive method was conceived of and implemented.

The implementation was built in Unity3D with the SteamVR plugin and an HTC 
VIVE headset and controllers for testing.

II. The Box Method

The “Box Method” allows the user to instantiate a rectangular prism by 

defining two opposing and diagonal vertices. (Figure 1)

Figure 1: “Box Method”. Opposing vertices are defined by

the user in upper right corner and lower left corner.

III. The Convex Hull Method

When creating “meshes”—Unity’s name for dynamically modifiable game 

objects—through Unity’s script system, there needs to be three different types 

of information passed through for the mesh to not only be rendered, but be 

rendered correctly. 

1. The mesh vertices

2. The mesh normals (used for lighting calculations and texture assigning)

3. The mesh triangles (used for rendering, see: Figure 1)

The mesh vertices are user defined. The mesh normals—because the object is 

using a transparent wireframe shader whose appearance is not affected by the 

surrounding lighting—are arbitrary. The mesh triangles, however, need to be 

assigned at runtime. The algorithm for assigning these triangles must be able 

to run regardless of the number of vertices the user places.

Once all the pieces of the mesh are defined, we can enable the mesh renderer 

and the object will now be visible to us on the screen and in VR.

V. The VIVE Input Method

The inaccuracy problem of the “Box Method” can be solved in a fairly simple 

way: by giving the user more control over the placed vertices of the object. 

In the “Convex Hull Method”, the user places a series of vertices on the 

ground, around an object, as well as a single point used for calculating the 

height of the object. In case the user places points that are not incident on the 

edge or are not vertices of the largest creatable shape, we find the convex hull 

of the placed points. The convex hull is largest shape that encompasses all 

defined points, where each interior angle is less than 180°. (Figure 2)

The resulting object has the ability to be more complicated than a simple box 

(Figure 3), which allows for more accurate digital representations of objects, 

and by extension, larger play spaces.

In the “Box Method”, the user defines each vertex by moving either controller 

to the desired location in physical space, and pressing the trigger on the 

corresponding VIVE controller. The initially 1x1x1 selection box is then scaled 

with respect to the relative difference of position along the x, y, and z axes 

between the two user defined vertices. The box is then translated to the 

correct position in virtual space.

Due to the fact that the object is not instantiating at runtime—simply changing 

the scale of an existing object and making it visible—this method was 

relatively easy to implement. 

However, the ease of implementation is reflected in the poor accuracy of 

representation. This method is only suitable for uniform, box-like objects. If 

given more complicated objects to trace, such as an object with a zig-zag 

edge, there would be a noticeable difference in position between the physical 

or real edge of the object, and the virtually represented edge of the object. 

When dealing with already minimized spaces, maximizing the playable area is 

an important priority. 

Figure 2: Convex hull creation with user defined vertices.

(credit: Brigham Young University)

IV. Procedural Meshes in Unity

While the “Convex Hull” method proved to be effective, the method itself is 

unintuitive for new users. The user must use 3 or 4 different buttons in a 

certain order, each with their own role in the creation of the object. To create a 

more intuitive user experience, we chose to replicate a method that SteamVR

uses when setting up the tracked space (Figure 4), but in a different context.

Our implementation of this method has the user hold the controller trigger 

down and “trace” the edge of the physical object. (Figure 5)

Figure 4: SteamVR room setup, the user holds the controller trigger

and traces the edge of the playable space. (credit: Jeffrey Grubb, YouTube)

VI. Implications and Future Work

If game developers or SteamVR were to implement this as part of game setup, 

users would be able to play games in VR without removing large objects like 

tables or chairs from their play area, and previously unusable areas would 

now be available to play in.

A comprehensive user study comparing different shaders and user immersion 

levels is still needed before this implementation becomes ubiquitous.

VII. Acknowledgements

I would like to thank Alec, Jack, and Coleman for always being there to answer 

my sometimes trivial questions. I would also like to thank Dr. McMahan for 

allowing me to work in this lab, as well as Adam and Alan for keeping me 

company during long days. Finally, thank you to the Clark scholars program 

for giving me this wonderful opportunity even before my freshman year.

Figure 5: Some interesting creatable shapes using the

“VIVE Input Method”, a pseudo-tracing algorithm.

Figure 3: Convex user-created objects


