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1 Abstract

Hyperbolic space Hn is a non-Euclidean geometry with negative curvature. Studies have found that for
certain classes of problems where data may need to be represented hierarchically or in a tree-like structure,
Hyperbolic geometries may yield better embeddings. However, recent published work has ignored the fact
that one can derive gradient descent update rules directly within Hn. The tutorial given in [10] derives and
implements GD within Hn for the problem of finding the barycentre (Karcher mean) of a set of points on
a hyperbolic manifold. We extended the work in [10] by deriving and implementing Armijo backtracking
search, the Barzelia-Borwein algorithm, and Nesterov accelerated gradient descent in Hn 1. We confirm that
these modalities accelerate convergence in this convex optimization problem of H2, an aspect ignored in [10].
Moreover, we demonstrate the usefulness of these algorithms for k-means clustering in Hn.

2 Introduction and Related Work

Hyperbolic space is a Riemannian manifold of n-dimensions having negative curvature, contrasting with
Euclidian space, having curvature of 1, and elliptical space whose curvature is greater than 1. Russian math-
ematician Nikolai Lobachevsky published the first report describing this new geometry, and the principles
were extended by other notable eighteenth-century mathematicians such as János Bolyai, Carl Friedrich
Gauss, and others [5]. That a non-Euclidian geometry (that is, one not comporting with human experience
in the world) could be mathematically complete and consistent had significant philosophical implications,
and shifted the field of mathematics from the principal aim of explaining the material world to the modern
view that mathematics deals with abstract concepts not necessarily found in nature.

Recently, investigators recognized that the negative curvature of hyperbolic space, with the attendant
increase in diameter with distance from the origin, serves well as an embedding space for hierarchical data.
Such data are often encoded in tree-like data structures, and the increased number of nodes as one travels from
the root, owing to the branching factor, can be modeled in negative-curvature spaces; hyperbolic geometry
may be regarded as a continuous analogue to trees [6]. For this reason, hyperbolic space representations have
found increasing usefulness in the data sciences. Indeed, investigators recently described that representing
the WordNet noun hierarchy in hyperbolic space resulted in significant improvement in the link prediction
task when compared to Euclidian embeddings [6].

It is clearly difficult for humans, living in a locally Euclidian world, to visualize objects in non-Euclidian
space. Therefore, several models of hyperbolic space have been described to ease mathematical management,
in which objects are displayed in two dimensions. These representational options include the Poincaré disc
or ball, the Klein model, and the hyperboloid/Lorenz model [5, 7, 10]. The models differ in their specific
mathematical manipulations. For example, whereas distances in the Poincaré disk model are faithfully
represented in two dimensions, angles are deformed; the opposite case holds true in the Klein disk model.

When points are embedded in a Reimannian manifold such as hyperbolic space, distances between points
are measured along the shortest geodesic connecting them. Thus, when gradient descent algorithms are used
to optimize functions of parameters embedded in such a space, the parameter update moves in a direction
on the geodesic corresponding to the direction of the negative gradient. Early reports of optimization in
hyperbolic space described techniques of approximating the gradient on the Poincaré disc or ball [6], but
recent work suggests that gradient descent can be performed more straightforwardly, without approximation,
when the data are modeled using the hyperboloid/Lorenz model [7, 10]. To simplify the computations, the

1Code available at https://github.com/skinn009/hyperbolic.
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gradients are computed in the tangent space of the Hn+1 Minkowski space in which the Hn hyperboloid is
embedded. The gradients are then projected back onto the manifold using the exponential map. Stochastic
gradient descent has been shown to converge almost surely on arbitrary Riemannian manifolds [4]. Fur-
thermore, modified accelerated gradient methods have been proposed for tighter convergence guarantees in
non-euclidean space [11]. Nonetheless, there are many algorithms that demonstrate improved convergence
rates of gradient descent in euclidian space; our objective is to investigate the effectiveness of several such
algorithms in hyperbolic space.

3 Mathematical Background

We use tools from differential geometry [8] to define our model of hyperbolic space, embedded in the ambient
space, and constructed from the more general concept of a vector field, V .

3.1 The Minkowski Hyperboloid Model

Definition 1. A map V × V → R, denoted (v, w) 7→ 〈v, w〉, is a bilinear form if for all λ1, λ2 ∈ R,
v1,v2,w ∈ V , we have that

〈λ1v1 + λ2v2,w〉 = λ1〈w,v1〉+ λ2〈w,v2〉
〈w, λ1v1 + λ2v2〉 = λ1〈w,v1〉+ λ2〈w,v2〉.

A bilinear form is called symmetric if for all v,w ∈ V ,

〈v,w〉 = 〈w,v〉.

We now introduce the Minkowski bilinear form, which is the natural and precise way of defining Hn [9].
Nonetheless, we will see later that it is not the only representation of Hn.

Definition 2. The Minkowski product is a symmetric bilinear form defined as

〈u,v〉M = u1v1 + · · ·+ un−1vn−1 − unvn for u,v ∈ Rn.

Clearly, the Minkowski product is symmetric and also a bilinear form since it is linear in each of its pa-
rameters. However, note that the Minkowski product is not a traditional inner product since there are
vectors v,w ∈ Rn such that 〈v,w〉M < 0. The Minkowski product appears in physics and is also called the
Lorentzian product. We can now use the Minkowski product to define our model of Hn as follows.

Definition 3. The Minkowski Hyperboloid model of Hn is given by

Hn = {x ∈ Rn:1|〈x,x〉n:1 = −1, xn+1 > 0}.

To be consistent with the notation provided by [10], we switch to the notation Rn:1 and 〈·, ·〉n:1 to denote
Rn+1 space and 〈·, ·〉M respectively.

As an example of the Minkowski Hyperboloid model, consider the case of H2. We have that

H2 = {x ∈ R3|x2
1 + x2

2 − x2
3 = −1, x3 > 0}.

We can rearrange the constraints to get that x3 =
√
x2

1 + x2
2 + 1 which corresponds to exactly the upper

sheet of the hyperboloid in euclidean R3 space (Fig. 1). The positive constraint on x3 removes the second
sheet commonly shown in figures of hyperboloids.

3.2 Gradient Updates in Hyperbolic Space

We can now generate points in hyperbolic space Hn simply by sampling a vector y ∈ Rn and constructing
yn+1 =

√
y2

1 + . . . y2
n + 1. Then the new vector x = (y, yn+1) ∈ Hn. Note that x is a n + 1 dimensional

vector. We now introduce our first problem using these points in Hn.
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Figure 1: Hyperboloid H2 of one sheet in R3 (from [9]). One may also observe H1 and M2 in this diagram.
Here, H1 corresponds to the hyperboloid model one dimension lower, taken as a curve across the surface of
H2. Similarly, M2 corresponds to the Minkowski space of H1 which is one dimension higher.

Problem 1. Let x1, . . . ,xm ∈ Hn be given. The barycenter or Karcher mean problem seeks to find some g
such that

g = argminp∈Hn

1

m

m∑
i=1

d2
Hn(p,xi).

Where dHn(x, y) = arcosh(−〈x, y〉n:1) denotes the distance along the geodesic between points in hyperbolic
space [10]. This problem is convex in hyperbolic space—the proof is beyond the scope of this project—and
therefore has a global minimizer g [2].

We can also calculate the gradient of the distance function as follows.

∇udHn = ∇u arcosh(−〈u, v〉n:1)

=
1√

〈u, v〉2n:1 − 1
∇u(−〈u, v〉n:1)

=
1√

〈u, v〉2n:1 − 1
∇u(−(−un+1vn+1 +

n∑
i=1

uivi))

=
1√

〈u, v〉2n:1 − 1
∇u(un+1vn+1 −

n∑
i=1

uivi)

=
1√

〈u, v〉2n:1 − 1
(−v1,−v2, . . . ,−vn, vn+1)

Where (−v1,−v2, . . . ,−vn, vn+1) is a vector. However, when we take the gradient in the ambient space, the
vector of partial derivatives by the chain rule also negates the final component (since we are in Minkowski
metric space). Therefore, the final gradient of the distance function in the ambient space is given by

∇Rn:1

u dHn(u, v) = −((〈u, v〉2n:1 − 1)−
1
2 · v.

Let E denote the objective function given by

E =
1

m

m∑
i=1

d2
Hn(p,xi).
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We have, from the derivation above, the following gradient of E.

∇Rn:1

p E =
2

m

m∑
i=1

dHn(p,xi)∇Rn:1

u dHn(p,xi)

Definition 4. A tangent vector to a surface S at a point p is the tangent vector at p of a curve in S passing
through p. The tangent space TpS of S at p is the set of all tangent vectors to S at p.

Notice that the tangent space will generally be a set with infinite cardinality since there can be more than
a single curve on S passing through p. Next, we must project the gradient from the ambient space Rn:1

onto the tangent space of Hn. This is simply done by the following projection (w.r.t. some point p on the
hyperboloid).

∇Hn

p E = ∇Rn:1

p E +

〈
p,∇Rn:1

p E

〉
n:1

· p.

Now we have the gradient of our loss in the tangent space. This essentially corresponds to the normal
gradient of a loss in Euclidean space. However, unlike in Euclidean space, we cannot simply subtract our
gradient times some step size in the parameter update, for two reasons. First, because the distance metric
we are working with is different, the shortest path may be curved (Fig. 5). Second, if we do subtract the
gradient, the new point may not be on the hyperboloid Hn. There is no euclidean analog to working in
hyperbolic space, i.e. we cannot work in euclidean space and somehow project back to hyperbolic space.
For these reasons, we use the exponential map, which maps elements from the tangent space back to the
manifold. The hyperbolic parameter update equation is:

Θnew = ExpΘ(−α · ∇Hn

Θ E).

Where Expp, the exponential map from the tangent space back to the hyperbolic manifold, is:

Expp(v) = cosh(||v||)p+ sinh(||v||) v

||v||
. (1)

It is worth noting that this method still works for general Riemannian manifolds, and is described in further
detail in [4]. However, the exponential map will change for different spaces. In some spaces, it may be
intractable to compute exactly, and so some approximation will have to be used. Fortunately, in hyperbolic
space it is given by the simple closed form expression in equation 1.

4 Methods

We aim to implement the algorithm that computes the barycentre (or center of mass) of a set of points
in hyperbolic space. As with the general gradient descent algorithm, choosing the optimal learning rate γ
is challenging and significantly impacts algorithm convergence [3]. We investigated and implement several
options that might improve convergence of the algorithm and that were not discussed in [10]. These include:

• Standard “vanilla” gradient descent

• Nesterov accelerated gradient descent

• Armijo backtracking search with gradient descent

• Barzelia-Borwein algorithm gradient descent

Owing to the difficulty of graphically representing higher dimensions, we present results obtained in the
hyperboloid representation of H2. Points were generated randomly in the R2 Minkowski ambient space, and
the final coordinate x3 was constructed to lie on the hyperboloid (section 3.2). Thus, in the limit as the
number of points increases, the barycentre of their mass resides at the origin, simplifying the evaluation of our
algorithms’ convergence. We also randomly instantiated the initial centroid to be on the circle of a certain size
(usually r = 10), and construct the final coordinate so that the point lies on the hyperboloid. For the vanilla
GD, the learning rate was constant at 0.1; this value was also used for gamma in the algorithms requiring this
parameter. We also experimented with smaller γ values for AGD, Armijo, and Barzelia-Borwein. Finally,
we implemented hyperbolic k-means clustering, with two initialization schemes.
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5 Experimental Results

5.1 Vanilla Gradient Descent

We implement the vanilla gradient descent algorithm described in section 3.2 from scratch with numpy to
generate the barycentre of points in H2. In Figure 2 is shown a set of points embedded on the hyperbolic
sheet, where the centroid is the red dot; this is clearly different from where the euclidian centroid would
lie. To test our work, we also implemented the Poincaré disc projection, which takes points in H2 and maps
them to points on the unit circle in R2. This allows a distorted visualization of H2 on the unit circle (Fig.
3), where the orange dots represent the centroid generated at each iteration of the algorithm. We can see
that there is convergence to the origin, as expected.

Figure 2: Sampled points on H2 sitting in R3 with
Karcher mean (red). Karcher mean of H2 is not the
same as centroid in R3.

Figure 3: Same sampled points shown in R2 using
Poincaré projection. Path to Karcher mean during
GD marked in orange.

To further illustrate the non-intuitive nature of hyperbolic space, we generate points from only the first
quadrant of R3 on H2 (Fig. 4). We show that the geodesic, the shortest path between two points, is not a
straight line like in euclidean space (Fig. 5). Furthermore, Fig. 4 demonstrates that owing to the warped
distances inherit in the representation, we cannot simply project points from H2 onto R2 and take the
centroid there, since not only is the distance metric different, the solution must also still be in H2. Finally,
Fig. 6 demonstrates that the Poincaré projection is not restricted to H2 and shows the projection of a set
of points in H3 along with the convergence of the algorithm (orange points) to their Karcher mean.

5.2 Accelerated Gradient Descent Methods

We also implemented accelerated GD, Armijo line search, and Barzelia-Borwein GD. On a simple dataset
with 250 points in H2, vanilla takes 27 steps before meeting our convergence criterion (||∇H2

θ E||inf ≤ 1e−4).
Our implementations of vanilla GD with Armijo line search, Nesterov accelerated GD with Armijo line search,
and Barzelia-Borwein GD with Armijo line search take 3, 6, and 6 iterations to converge respectively. Figure
7 shows the loss comparison, and figures 8, 9, 10, and 11 show the path taken for each of the implemented
methods.

In general, it is not clear that all of these accelerated gradient methods should converge. Indeed, in
dimensions higher than H2, the Barzelia-Borwein (BB) method did not converge to the correct centroid, and
often stopped after one iteration. Our parameter update is as follows.

Θnew = ExpΘ(−α · ∇Hn

Θ E)

= cosh(|| − α · ∇Hn

Θ E||)Θ + sinh(|| − α · ∇Hn

Θ E||) −α · ∇
Hn

Θ E

|| − α · ∇Hn

Θ E||
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Figure 4: Points in first quadrant of the hyperboloid
H2 depicted with their Karcher mean.

Figure 5: Poincaré projection of points in first quad-
rant (left). Initializing GD at a point in the point set
shows us that the shortest line between two points
lies on a geodesic connecting the points.

Figure 6: The Poincaré ball projection of H3 show-
ing convergence of vanilla gradient descent.

Figure 7: Loss comparison for accelerated GD meth-
ods in H2. Barzelia-Borwein hidden behind AGD.

As a reminder, cosh : R→ [1,∞) and sinh(x) maps to R+ if x is positive. The AGD and BB algorithms rely
on approximating averaging and approximating local curvature with the Hessian, respectively. We speculate
that these approximations may not faithfully carry over into hyperbolic space, owing to the markedly different
distance metric. This warrants further investigation. Moreover, additional investigation should be done in
regard to whether there are any convergence guarantees associated with using these techniques in non-
euclidian space. It may be that further modification of the parameter update step is needed for accelerated
gradient methods in hyperbolic space, like the method proposed for Riemannian accelerated GD in [11].
Henceforth, we simply use vanilla gradient descent in our experiments.
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Figure 8: Vanilla gradient descent path (α = 0.1). Figure 9: Vanilla GD with Armijo (γ = 0.1).

Figure 10: Accelerated GD with Armijo (γ = 0.1).
Figure 11: Barzelia-Borwein GD with Armijo (γ =
0.1).

5.3 Clustering in Hyperbolic Space

Since the barycenter problem is a subproblem within the general unsupervised learning algorithm k-means,
we can formulate another problem to solve using a similar algorithm.

Problem 2. Let x1, . . . ,xm ∈ Hn be given. Then we have the following hyperbolic kmeans optimization
problem

min
S1,...,Sk

k∑
i=1

∑
j∈Si

d2
Hn(xj, µi).

Where Si ⊆ {1, . . . ,K} is the i’th cluster, Si ∩ Sj = ∅ for i 6= j, each point is assigned to a cluster, and µi
denotes the centroid of the i’th cluster.

Clustering is non-convex problem and NP-hard even for the k = 2 case in euclidean space. We use block
coordinate descent to solve approximately, and whenever we need to recompute a cluster center µi, we use
our implementation described above.
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We implement from scratch the hyperbolic k-means algorithm with a random centroid initialization
scheme and the “k-means++” scheme, which is an algorithm to better initialize the centroids [1]. We test
our implementation by inspecting the special case of H2 which can be visualized on the Poincaré disc. First,
we generate points from the positive and negative octants of R3 that also sit on the hyperboloid H2 (Fig.
12). We see that with k = 2, our algorithm converges with to a reasonable solution. Next, we randomly
sample 10 points in hyperbolic space, and generate additional points around each of these 10 points within
a ball of radius 0.2. Then, we attempt to find cluster centers with the hyperbolic k-means algorithm for
k = 10 (Fig. 13). Here, we converge to a local minima since we can see that not all cluster centers lie at the
ball centers. This is to be expected, since in general the k-means loss is non-convex.

Figure 12: Randomly sampling points in positive
and negative octant of R3 and generating points in
H2 with them.

Figure 13: Randomly sample 10 points to serve as
centers for hyperbolic balls in H2, then sample 10
additional points from within each hyperbolic ball
(radius ε = 0.2).

Both of the previous experiments were run with a random initialization scheme for cluster centers. We
now benchmark our algorithm for larger dimensions and k values, with both the random and “k-means++”
schemes (Table 1). In general, we see that like in euclidean space, k-means++ performs better than the
random initialization.

5.4 A Note on the Convergence of Hyperbolic k-means

The k-means algorithm in euclidean space is guaranteed to converge to some local optima, as it alternates
between updating cluster assignments Si and updating cluster centroids µi. Similarly, in hyperbolic space
the k-means algorithm will also terminate eventually. A sketch is as follows. By definition, the cluster
assignment step is guaranteed to decrease the objective function, as in euclidean space. Furthermore, the
cluster centroid algorithm in Hn has a unique solution [2]. Then the second step of the algorithm where we
update the centroids µi will also decrease the objective. Since the objective is bounded from below (by zero or
some positive value), then we simply terminate when our function changes less than ε > 0 between episodes.
Numerically, however, ε should be determined by the convergence criterion for centroid identification, since
we are in fact approximating each µi within our procedure.

Finally, the original k-means++ paper proves a Θ(log k) competitive ratio in euclidean space [1]. They
also prove a competitive ratio in p-normed metric spaces, however, they lose a 22p factor in addition to the
log k term. The results from the original paper do not seem to apply in non-p-normed spaces, so it is unclear
if k-means++ offers the same theoretical guarantees in hyperbolic space.
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Dimension k (Number of clusters) random init k++ init

5

5 496.23 494.89
10 403.21 409.37
15 379.17 364.62
20 366.44 337.84

10

5 771.52 769.43
10 744.82 748.81
15 727.83 705.44
20 689.47 652.09

15

5 951.74 946.49
10 929.26 920.48
15 884.06 853.19
20 842.52 801.59

20

5 1050.71 1050.37
10 1010.34 1001.79
15 996.09 972.96
20 987.11 958.64

Table 1: k-means objective function average over 10 runs of 100 randomly sampled points for both the
random initialization and the k-means++ initialization schemes.

6 Conclusions and Future Work

We have demonstrated the usefulness of several accelerated gradient descent methods in hyperbolic space Hn.
Moreover, we have implemented the k-means algorithm in this non-euclidean space. These methods may be
helpful in the broader application of embedding hierarchical data structures, such as trees, for the solution of
problems with such data. Given additional time, we would like to implement and compare against the AGD
method proposed in [11]. Furthermore, it remains to be seen whether convergence guarantees for similar
methods can hold on arbitrary Riemannian manifolds. That we found success in the negative-curvature
hyperbolic space also suggests that accelerated gradient descent may also be used in positive-curvature
elliptical space (which is also a Riemannian manifold).
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