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Taxonomy of Geometries
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Related Work

» Continuous analog of trees, used in representing WordNet
hierarchy space [Nickel and Kiela, 2017].

> Most use alternate representations of hyperbolic space, but
[Wilson and Leimeister, 2018] argue that we can perform GD
directly in hyperbolic space.

» From the mathematics side, [Bonnabel, 2013] show that SGD
generalizes to arbitrary Riemannian manifolds (including H?").
» Accelerated Riemannian GD [Zhang and Sra, 2018] (COLT
'18).
» Generalize AGD to Riemannian manifolds with convergence
bounds (we found out about this paper yesterday).



Methods

» We extend the results in [Wilson and Leimeister, 2018]:
» Replicate experiments for vanilla GD from
[Wilson and Leimeister, 2018]
» Implement accelerated GD and Barzelia-Borwein for the
barycentre problem
» Implement Armijo backtracking search for selecting learning

rate
> Utilize barycentre problem implementation for hyperbolic
k-means clustering.

» No euclidean analog to optimization procedure. |.E. we cannot

solve the problem in euclidean space and somehow project
back.



Background

» [Wilson and Leimeister, 2018] give derivations for GD within
H" directly.

1. ® € H" = current value of the centroid

2. Gradient in the (n + 1)-dimensional ambient space with
respect to one of the arguments of the function measuring the
distance between two points has the form:

Vi o (uv) = ~(((, )5 1) 7F v

3. Note that (-, )1 is a special bilinear form in the ambient
space defined as

(U, V)1 = U1V + -+ + Up—1Vp—1 — UpV, for u,v € R



Background cont.

4 This gradient is then projected into the tangent space by the
following expression:

VE'E=vE"E <e,v{§“E> ..
n:1
5 Finally, the parameter update equation is:

onew — EXp@(—Oé . vgnE)

Where Exp,, the exponential map from the tangent space
back to the hyperbolic manifold, is:

Expp(v) = cosh([|v]|)p + S'nh(||V||)i



Example

As an example, consider the hyperboloid H? as follows.

H2 = {x € R}|x? + x5 — x3 = —1,x3 > 0}
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Results: Vanilla GD
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Figure 1: Sampled points on H?
sitting in R3 with Karcher mean
(red). Karcher mean of H? is not
the same as centroid in R3.
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Figure 2: Same sampled points
shown in R? using Poincaré
projection. Path to Karcher mean
during GD marked in orange.



Results: Vanilla GD
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Figure 4: Poincaré projection of
points in first quadrant (left).

Figure 3: Points in first quadrant Initializing GD at a point in the

of the hyperboloid H? depicted point set shows us that the

with their Karcher mean. shortest line between two points
lies on a geodesic connecting the

points.



Results: Vanilla GD

Figure 5: The Poincaré ball projection of H3 showing convergence of
vanilla gradient descent.



Results: Accelerated GD

Figure 6: Vanilla gradient descent
path (o = 0.1), 27 iterations.
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Figure 7: Vanilla GD with Armijo
(v = le — 4), 3 iterations.



Results: Accelerated GD
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Accelerated GD with Armijo  Barzelia-Borwein GD with Armijo
(v = 1le — 4), 6 iterations. (v = 1e — 4), 6 iterations.



Results: AGD in Higher Dimensions

> Not straightforward to get working correctly.

» Not clear if convergence guarantees hold, since algorithm is
different from the usual GD parameter update step.

» Algorithm in [Zhang and Sra, 2018] may work if we have time
to implement.



Clustering

» Barycenter problem is same as centroid update step in k-means
» random, k-means++ init scheme
» Not clear if k-means++ is still ©(log k) competitive.



Clustering
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Figure 8: Randomly sampling
points in positive and negative
octant of R3 and generating points
in H? with them.

100
o7

050 2

02

. R °
L)

000 .
025

050

-0.75 o

- ®

10

0
-1.00 -075 -050 -025 000 025 050 075 100

Figure 9: Randomly sample 10
points to serve as centers for
hyperbolic balls in H?, then sample
10 additional points from within
each hyperbolic ball (radius
e=0.2).



Clustering Initialization

Dimension  k (Number of clusters) random init k++ init

4*5 5 496.23 494.89
10 403.21 409.37
15 379.17 364.62
20 366.44 337.84
4*10 5 771.52 769.43
10 744.82 748.81
15 727.83 705.44
20 689.47 652.09
4*15 5 951.74 946.49
10 929.26 920.48
15 884.06 853.19
20 842.52 801.59
4*20 5 1050.71 1050.37
10 1010.34 1001.79

15 996.09 972.96
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