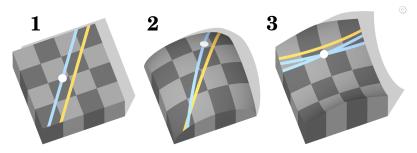
Gradient Descent Algorithms in Hyperbolic Space

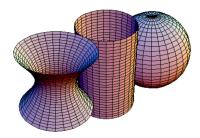
Michael Skinner and Siddartha Devic

Optimization in ML (CS 6301.012), UT Dallas

Taxonomy of Geometries



(1) Euclidean, (2) Elliptical, (3) Hyperbolic



Related Work

- Continuous analog of trees, used in representing WordNet hierarchy space [Nickel and Kiela, 2017].
- Most use alternate representations of hyperbolic space, but [Wilson and Leimeister, 2018] argue that we can perform GD directly in hyperbolic space.
- From the mathematics side, [Bonnabel, 2013] show that SGD generalizes to arbitrary Riemannian manifolds (including ℍⁿ).
- Accelerated Riemannian GD [Zhang and Sra, 2018] (COLT '18).
 - Generalize AGD to Riemannian manifolds with convergence bounds (we found out about this paper yesterday).

Methods

▶ We extend the results in [Wilson and Leimeister, 2018]:

- Replicate experiments for vanilla GD from [Wilson and Leimeister, 2018]
- Implement accelerated GD and Barzelia-Borwein for the barycentre problem
- Implement Armijo backtracking search for selecting learning rate
- Utilize barycentre problem implementation for hyperbolic k-means clustering.
- No euclidean analog to optimization procedure. I.E. we cannot solve the problem in euclidean space and somehow project back.

Background

- 1. $\Theta \in \mathbb{H}^n$ = current value of the centroid
- 2. Gradient in the (n + 1)-dimensional ambient space with respect to one of the arguments of the function measuring the distance between two points has the form:

$$\nabla_u^{\mathbb{R}^{n:1}} d_{\mathbb{H}^n}(u,v) = -((\langle u,v\rangle_{n:1}^2-1)^{-\frac{1}{2}} \cdot v.$$

3. Note that $\langle \cdot, \cdot \rangle_{n:1}$ is a special bilinear form in the ambient space defined as

$$\langle \mathbf{u}, \mathbf{v} \rangle_{n:1} = u_1 v_1 + \dots + u_{n-1} v_{n-1} - u_n v_n$$
 for $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.

Background cont.

4 This gradient is then projected into the tangent space by the following expression:

$$\nabla_{\Theta}^{\mathbb{H}^{n}}E = \nabla_{\Theta}^{\mathbb{R}^{n:1}}E + \left\langle \Theta, \nabla_{\Theta}^{\mathbb{R}^{n:1}}E \right\rangle_{n:1} \cdot \Theta.$$

5 Finally, the parameter update equation is:

$$\Theta^{new} = \mathsf{Exp}_{\Theta}(-\alpha \cdot \nabla_{\Theta}^{\mathbb{H}^n} E).$$

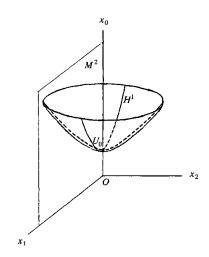
Where Exp_p , the exponential map from the tangent space back to the hyperbolic manifold, is:

$$\mathsf{Exp}_{p}(v) = \cosh(||v||)p + \sinh(||v||)\frac{v}{||v||}.$$

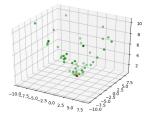
Example

As an example, consider the hyperboloid \mathbb{H}^2 as follows.

$$\mathbb{H}^2 = \{ \mathbf{x} \in \mathbb{R}^3 | x_1^2 + x_2^2 - x_3^2 = -1, x_3 > 0 \}$$



Results: Vanilla GD



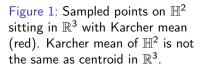
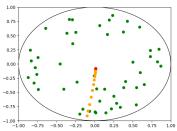


Figure 2: Same sampled points shown in \mathbb{R}^2 using Poincaré projection. Path to Karcher mean during GD marked in orange.



Results: Vanilla GD

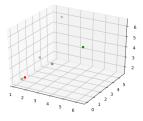


Figure 3: Points in first quadrant of the hyperboloid \mathbb{H}^2 depicted with their Karcher mean.

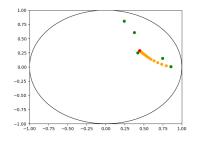


Figure 4: Poincaré projection of points in first quadrant (left). Initializing GD at a point in the point set shows us that the shortest line between two points lies on a geodesic connecting the points.

Results: Vanilla GD

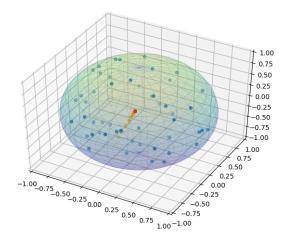
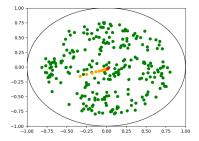


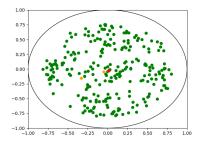
Figure 5: The Poincaré ball projection of \mathbb{H}^3 showing convergence of vanilla gradient descent.

Results: Accelerated GD

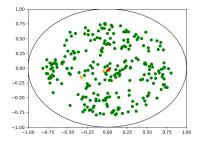


path ($\alpha = 0.1$), 27 iterations. ($\gamma = 1e - 4$), 3 iterations.

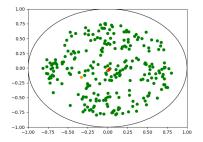
Figure 6: Vanilla gradient descent Figure 7: Vanilla GD with Armijo



Results: Accelerated GD



Accelerated GD with Armijo



Barzelia-Borwein GD with Armijo $(\gamma = 1e - 4)$, 6 iterations. $(\gamma = 1e - 4)$, 6 iterations.

Results: AGD in Higher Dimensions

- Not straightforward to get working correctly.
- Not clear if convergence guarantees hold, since algorithm is different from the usual GD parameter update step.
- Algorithm in [Zhang and Sra, 2018] may work if we have time to implement.

Clustering

- Barycenter problem is same as centroid update step in k-means
- random, k-means++ init scheme
- Not clear if k-means++ is still $\Theta(\log k)$ competitive.

Clustering

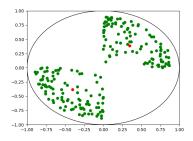


Figure 8: Randomly sampling points in positive and negative octant of \mathbb{R}^3 and generating points in \mathbb{H}^2 with them.

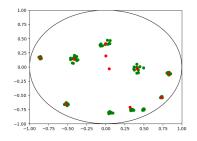


Figure 9: Randomly sample 10 points to serve as centers for hyperbolic balls in \mathbb{H}^2 , then sample 10 additional points from within each hyperbolic ball (radius $\epsilon = 0.2$).

Clustering Initialization

Dimension	k (Number of clusters)	random init	k++ init
4*5	5	496.23	494.89
	10	403.21	409.37
	15	379.17	364.62
	20	366.44	337.84
4*10	5	771.52	769.43
	10	744.82	748.81
	15	727.83	705.44
	20	689.47	652.09
4*15	5	951.74	946.49
	10	929.26	920.48
	15	884.06	853.19
	20	842.52	801.59
4*20	5	1050.71	1050.37
	10	1010.34	1001.79
	15	996.09	972.96

References

- Bonnabel, S. (2013).
 Stochastic gradient descent on riemannian manifolds.
 IEEE Transactions on Automatic Control, 58:2217–2229.
- Nickel, M. and Kiela, D. (2017).
 Poincaré embeddings for learning hierarchical representations.
 In Advances in neural information processing systems, pages 6338–6347.
- Wilson, B. and Leimeister, M. (2018). Gradient descent in hyperbolic space. arXiv preprint arXiv:1805.08207.

Zhang, H. and Sra, S. (2018). Towards riemannian accelerated gradient methods.