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Taxonomy of Geometries

(1) Euclidean, (2) Elliptical, (3) Hyperbolic



Related Work

I Continuous analog of trees, used in representing WordNet
hierarchy space [Nickel and Kiela, 2017].

I Most use alternate representations of hyperbolic space, but
[Wilson and Leimeister, 2018] argue that we can perform GD
directly in hyperbolic space.

I From the mathematics side, [Bonnabel, 2013] show that SGD
generalizes to arbitrary Riemannian manifolds (including Hn).

I Accelerated Riemannian GD [Zhang and Sra, 2018] (COLT
’18).
I Generalize AGD to Riemannian manifolds with convergence

bounds (we found out about this paper yesterday).



Methods

I We extend the results in [Wilson and Leimeister, 2018]:
I Replicate experiments for vanilla GD from

[Wilson and Leimeister, 2018]
I Implement accelerated GD and Barzelia-Borwein for the

barycentre problem
I Implement Armijo backtracking search for selecting learning

rate

I Utilize barycentre problem implementation for hyperbolic
k-means clustering.

I No euclidean analog to optimization procedure. I.E. we cannot
solve the problem in euclidean space and somehow project
back.



Background

I [Wilson and Leimeister, 2018] give derivations for GD within
Hn directly.

1. Θ ∈ Hn = current value of the centroid
2. Gradient in the (n + 1)-dimensional ambient space with

respect to one of the arguments of the function measuring the
distance between two points has the form:

∇Rn:1

u dHn(u, v) = −((〈u, v〉2n:1 − 1)−
1
2 · v .

3. Note that 〈·, ·〉n:1 is a special bilinear form in the ambient
space defined as

〈u, v〉n:1 = u1v1 + · · ·+ un−1vn−1 − unvn for u, v ∈ Rn.



Background cont.

4 This gradient is then projected into the tangent space by the
following expression:

∇Hn

Θ E = ∇Rn:1

Θ E +

〈
Θ,∇Rn:1

Θ E

〉
n:1
·Θ.

5 Finally, the parameter update equation is:

Θnew = ExpΘ(−α · ∇Hn

Θ E ).

Where Expp, the exponential map from the tangent space
back to the hyperbolic manifold, is:

Expp(v) = cosh(||v ||)p + sinh(||v ||) v

||v ||
.



Example
As an example, consider the hyperboloid H2 as follows.

H2 = {x ∈ R3|x2
1 + x2

2 − x2
3 = −1, x3 > 0}



Results: Vanilla GD

Figure 1: Sampled points on H2

sitting in R3 with Karcher mean
(red). Karcher mean of H2 is not
the same as centroid in R3.

Figure 2: Same sampled points
shown in R2 using Poincaré
projection. Path to Karcher mean
during GD marked in orange.



Results: Vanilla GD

Figure 3: Points in first quadrant
of the hyperboloid H2 depicted
with their Karcher mean.

Figure 4: Poincaré projection of
points in first quadrant (left).
Initializing GD at a point in the
point set shows us that the
shortest line between two points
lies on a geodesic connecting the
points.



Results: Vanilla GD

Figure 5: The Poincaré ball projection of H3 showing convergence of
vanilla gradient descent.



Results: Accelerated GD

Figure 6: Vanilla gradient descent
path (α = 0.1), 27 iterations.

Figure 7: Vanilla GD with Armijo
(γ = 1e − 4), 3 iterations.



Results: Accelerated GD

Accelerated GD with Armijo
(γ = 1e − 4), 6 iterations.

Barzelia-Borwein GD with Armijo
(γ = 1e − 4), 6 iterations.



Results: AGD in Higher Dimensions

I Not straightforward to get working correctly.
I Not clear if convergence guarantees hold, since algorithm is

different from the usual GD parameter update step.
I Algorithm in [Zhang and Sra, 2018] may work if we have time

to implement.



Clustering

I Barycenter problem is same as centroid update step in k-means
I random, k-means++ init scheme
I Not clear if k-means++ is still Θ(log k) competitive.



Clustering

Figure 8: Randomly sampling
points in positive and negative
octant of R3 and generating points
in H2 with them.

Figure 9: Randomly sample 10
points to serve as centers for
hyperbolic balls in H2, then sample
10 additional points from within
each hyperbolic ball (radius
ε = 0.2).



Clustering Initialization
Dimension k (Number of clusters) random init k++ init

4*5 5 496.23 494.89
10 403.21 409.37
15 379.17 364.62
20 366.44 337.84

4*10 5 771.52 769.43
10 744.82 748.81
15 727.83 705.44
20 689.47 652.09

4*15 5 951.74 946.49
10 929.26 920.48
15 884.06 853.19
20 842.52 801.59

4*20 5 1050.71 1050.37
10 1010.34 1001.79
15 996.09 972.96
20 987.11 958.64

Table 1: k-means objective function average over 10 runs of 100
randomly sampled points for both the random initialization and the
k-means++ initialization schemes.
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