
Siddartha Devic The University of Texas at Dallas

1 Introduction
Reinforcement learning (RL) is a subfield

of machine learning (ML) wherein an agent
learns to optimally interact with a simulated
environment by attempting to maximize a
reward signal. RL has been used to learn
the dynamics of many difficult problems in-
cluding scheduling for radiation therapy in
cancer treatment, optimizing chemical re-
actions, and achieving superhuman perfor-
mance in complex games like “Go”. Unlike
“supervised learning” tasks, tasks such as
locating and identifying cancerous cells in
images, RL does not require the expensive
procedure of collecting and labeling large
amounts of data. Therefore, creating prac-
tical RL algorithms with provable conver-
gence guarantees is of great interest to the
general scientific community wishing to ap-
ply ML to tasks where data collection is ex-
pensive and performance critical.
However, current popular deep RL tech-

niques suffer from a lack of theoretical
convergence guarantees. We propose a
method which utilizes a lifted convex func-
tion as a drop in replacement for a deep
neural network, and are working towards
showing provable convergence guarantees
within a popular RL framework. We suc-
cessfully implement our method and show
it’s viability within a simple RL environment.

2 Related Work
Problems that fit into the RL frame-

work can all be described by Markov Deci-
sion Processes, which specify the dynam-
ics of an environment through sequences
of states and actions the simulated agent
takes to transition between these states.
Deep Q-learning is a popular RL paradigm
where neural networks are utilized to ap-
proximate the Q-value of a state-action pair,
Q(s, a). The neural network is utilized as a
function approximator in an attempt to learn

the value, i.e., the optimal reward, of state-
action pairs. During training, Q-values are
updated according to the Bellman optimal-
ity condition:

Q∗(s, a) = r + γmax
a′

Q∗(s′, a′) (1)

In practice, it is not clear that using neural
networks asQ-value function approximators
is optimal since the maximization procedure
for choosing the best possible action a′ in a
given state s′ is non-convex. Motivated by
this, [1] introduce input convex neural net-
works (ICNNs). Since ICNNs are defined as
the composition of convex activation func-
tions and non-negative affine functions, they
are convex in the input. The authors utilize
this to find the best action given a fixed state,
ensuring that they arrive at the maximal Q-
value during training and inference.
I implemented and replicated the RL ex-

periments done by [1] for fully and par-
tially input convex neural networks (ICNNs
& PICNNs). ICNNs specify the network
weights to be positive along paths from both
the input state and action vector, while PIC-
NNs need positive weights only from the
action vector input, given that the action is
what we are attempting to optimize over.
I utilized Tensorflow to create the ICNN
DQNs, with a projection based method to
learn the weights of the neural network. I
evaluated both methods on a variety of RL
tasks from OpenAI Gym [3].
Importantly, I obtained empirical evidence

that training ICNNs as Q-value function ap-
proximators in the context of RL is practi-
cally challenging and does not have con-
vergence guarantees: we observed that the
learned fully ICNN Q-value function approx-
imator can diverge to arbitrarily bad fits de-
pending on choices of the hyperparameters.
These results motivated us to seek a new
convex function approximation scheme in-
dependent of ICNNs.

1



Siddartha Devic The University of Texas at Dallas

3 Fitting Convex Functions
ICNNs are simply the composition of pos-

itive affine functions and convex activation
functions. If we fix the activation function to
be any piecewise linear function, e.g., Re-
LUs, then ICNNs reduce to a composition of
positive piecewise linear functions. There-
fore, to directly learn a convex function sim-
ilar to ICNNs, it is natural to study fitting con-
vex piecewise linear functions of the form:

f(x) = max{aT1 x+ b1,…, aTLx+ bL}.

Finding the best piecewise linear function
that approximates a finite point set is framed
as a convex optimization problem in [2]. I
implemented this in Python with the pack-
age cvxpy by solving a quadratic program.
However, using simple two layer neural

networks as function approximators easily
outperforms the best convex piecewise lin-
ear function on simple regression datasets.
Therefore, I extended the algorithm and
implemented methods to compute the dif-
ference of an arbitrary number of convex
functions. With this new algorithm, I was
able to learn a set of convex piecewise lin-
ear functions whose difference could out-
perform simple neural networks on a vari-
ety of UCI regression datasets. Although
practically effective, learning a difference of
piecewise functions is intractable for many
real-time applications we may be interested
in, such as RL. Furthermore, since a differ-
ence of convex functions is not necessarily
convex, we have not achieved our goal of
allowing for efficient global minimization.
Instead, we explored learning the best

convex piecewise linear function using an
iterative method. We begin with the lower
convex envelope of the data, then shift the
anchors up through an efficient gradient de-
scent update scheme which maintains con-
vexity of the function. I debugged and tested
an implementation of this method on a va-

riety of regression datasets, comparing it
against the previous methods. After exper-
imenting, I found that this method learns
a function that can oftentimes outperform
the other methods on a held out test set
due to neural networks overfitting and multi-
function fitting being computationally ineffi-
cient. However, since we are in fact learning
the best convex piecewise affine function,
our solution can only be considered “good”
if we assume that the data we are attempt-
ing to fit lies in some convex position. In
datasets where the data clearly lie in non-
convex positions, neural networks usually
perform the best given that they are univer-
sal function approximators which can learn
arbitrary functions.

4 Kernel Methods and Hyperplanes
Since the restriction that our training data

points lie in convex position is quite strict,
we extend our algorithm to work with ker-
nels. Kernels are functions which map in-
put data to higher dimensions where simpler
functions can be considered more expres-
sive. With high probability, points in Gaus-
sian kernel space–a special kernel which
maps pairs of input points to arbitrary dimen-
sional space—lie in convex position since
there are effectively infinitely many dimen-
sions for the data to be distributed along.
Preliminary results indicate that we can in

fact learn complicated and potentially non-
convex functions in the input space due to
the expressivity of the kernel. Furthermore,
we can find global optima of these functions
since our procedure learns a convex func-
tion in the “lifted” space. However, our al-
gorithm really learns a set of points whose
convex hull determines the function, and is
not determined everywhere in kernel space.
When a new point is sampled that lies out-
side the hull, our function is not well defined.
To fix this, we extend our algorithm to learn

2



Siddartha Devic The University of Texas at Dallas

Figure 1: 2-D state vs. Q-value of best action within
the state. Learned “envelope” function is concave
and maximized at top left corner.

an associated hyperplane with each point in
our lower envelope set. The convex func-
tion is then defined as the pointwise maxi-
mum of the set of hyperplanes across each
anchor of our lower convex envelope.

5 Convex Function Fitting for RL
We use our kernel piecewise convex lin-

ear function as a drop in approximator for
the Q-value function in deep Q-learning.
Similarly to [1], we can explicitly optimize
over our maintained function at inference
time. Since we are attempting to choose the
action which maximizes the Q-value given a
fixed state, we assume the Q-value function
is concave and instead fit our convex func-
tion to the negative Q-value function.
I ran simulations of our method on a

simple RL environment where a randomly
placed agent is rewarded for moving to the
top left corner of a unit square by taking ac-
tions which correspond to moving a fixed
distance in any direction. After working with
our collaborators on debugging our method,
we were able to learn a piecewise convex
function in kernel space that correctly rep-
resents the Q-value function for the problem
(Fig. 1). Our function correctly indicates that
the max Q-value occurs at the top left cor-
ner since the agent receives 1000 units of
reward for any action taken within that state.

6 Conclusions and Future Work
Although the initial results are promising,

there is room for improvement in a variety
of areas. Our current implementation is in-
efficient and has no parallelization. In the
coming weeks, I plan to parallelize the opti-
mization procedures required for each batch
update through multiprocessing.
In parallel, our collaborators have proved

the convergence of our method in fixed fi-
nite dimensions under somewhat restrictive
assumptions. With more theoretical work,
we hope to obtain convergence/correctness
guarantees when our method is used as a
drop-in function approximator for RL, unlike
in deep Q-learning or in ICNNs. However,
it is not clear that we can obtain the same
convergence guarantees when working in,
for example, Gaussian kernel space. I plan
to investigate convexity in arbitrary dimen-
sional spaces, attempting to prove conver-
gence guarantees of our method.
Obtaining provable performance in RL is

important for adoption in many, more critical
applications within medicine and the hard
sciences. Although our algorithm still needs
improvements regarding runtime and per-
formance, it is a promising first step in ap-
plying more traditional methods from con-
vex optimization to RL that may overcome
issues of convergence and correctness that
are challenging to establish for current deep
Q-learning approaches.

References
[1] B. Amos, L. Xu, and J. Z. Kolter. Input con-

vex neural networks. In Proceedings of the 34th
International Conference on Machine Learning,
volume 70 of PMLR, pages 146–155, 2017.

[2] S. Boyd and L. Vandenberghe. Convex Op-
timization. Cambridge University Press, New
York, NY, USA, 2004.

[3] G. Brockman, V. Cheung, L. Pettersson,
J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym, 2016.

3


	Introduction
	Related Work
	Fitting Convex Functions
	Kernel Methods and Hyperplanes
	Convex Function Fitting for RL
	Conclusions and Future Work

