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Figure 3 (Left): A simple neural network. Figure 4 (Right): Example non-convex loss 

function of a neural network. 

Figure 1 (Left): DeepMind’s simulated human agent learns to run and avoid 

obstacles/falling (source: https://deepmind.com/blog/producing-flexible-behaviours-

simulated-environments/). Figure 2 (Right): The agent-environment feedback loop (source: 

https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html)

Figure 6: (Left, Inverted Pendulum) 

The agent can choose to move the 

platform left or right at each state, 

attempting to balance the pole 

without falling. (Above, Half-cheetah) 

We apply torque to joints and 

maximize distance traveled.
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Generally, reinforcement learning concerns an agent interacting with an 

environment to complete a task. Surprisingly many problems may fall 

into the reinforcement learning paradigm. Some notable examples 

include Google DeepMind training a simulated human how to run around 

obstacles (Figure 1), a reinforcement learning agent learning to optimize 

chemical reactions and outperform state of the art methods, and news 

recommendation systems.

In practice, agents are part of the state, action, reward cycle presented 

in Figure 2. For example, in the case of the running human problem 

(Figure 1), the state description would be the position and velocity of 

each joint. An agent applies an action, in this case torque to each joint, 

and will then receive a reward proportional to how far the human moves 

and how little energy was expended. The agent receives a new state, 

and the process repeats. Eventually, the agent learns to maximize the 

sum of the rewards at each time step over a finite “episode”.

I. Introduction

We introduce a convex function approximator that has provable 

convergence in Q-learning, a highly applicable model for reinforcement 

learning. We present our results on a variety of reinforcement learning 

tasks, and show promising initial results when compared to naively-built 

“Input Convex Neural Networks”.

Convex functions are functions where the tangent line lies below the 

function at every point. They have the special property that any critical 

point of the function is guaranteed to be a global minimum or maximum. 

Unfortunately, training neural networks requires “optimizing” (finding the 

minimum) of non-convex functions, but we cannot guarantee that any 

local minimum we arrive at will be a global minimum (Figure 4).

Piecewise-linear functions are both interpretable and fast, removing the 

black box nature surrounding neural networks. Boyd [1] gives us a 

quadratic program to fit the best convex piecewise-linear function,

however this is intractable for reinforcement learning. We instead 

develop a stochastic method to learn the best convex piecewise-linear 

function to a given set of data. Furthermore, our method provably* 

converges in the Q-learning setting ([2], V). We begin by computing the 

convex lower hull, and projecting all points onto it. We then iteratively 

move our hull upwards, maintaining convexity at each step (Figure 5). 

V. Deep Q-Learning

Q-learning is an approach to reinforcement learning where the agent 

attempts to learn the long term value (Q-function) of a particular state-

action pair. The Q-update rule is defined as:

We iterate hundreds of thousands of times in an attempt to learn regions 

of high and low Q-values. Once training is complete, the agent simply 

takes actions, maximizing Q-values at each step.

We first compare an iterative version of Boyd’s algorithm (cvx-fit) against 

a single layer neural network (NN) on certain regression tasks:

The high performance of the cvx-fit algorithm implies that our stochastic 

variant may perform well on more complex tasks, where cvx-fit is 

intractable.

We implement the convex-neural network analogue, “fully input convex 

neural networks (ICNNs)” [3]. Although ICNNs are a good first step in 

exploring convexity in deep reinforcement learning, we believe that we 

can outperform them in the Q-learning setting using our simple convex 

function approximator. Our results are obtained from a reinforcement 

learning simulation library called openai-gym. The tasks we evaluate our 

method on are inverted pendulum and half-cheetah (Figure 6).
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III. Neural Networks

Neural networks are comprised of thousands of nodes and weighted 

connections between these nodes that attempt to accurately predict an 

output given a certain input (Figure 3). Neural networks in computer 

science are loosely modeled after those in the human brain, where each 

portion of the input is weighted and considered differently. However, in 

computer science they are simply trained to perform well on a single 

prediction task and do not have any general intelligence.

Recently, computational advancements have made neural networks 

tractable for a large subset of machine learning problems, including 

certain types of reinforcement learning.

Figure 5: We begin with the convex lower hull (Left), and iteratively move our fit upwards 

to obtain the best convex-piecewise linear function (Right, 750 iterations).

Note: NaN means non-convergent. The ICNN cannot learn to perform 

well due to the assumption of convexity in the Q-Function.

Our next step is to apply our stochastic convex piecewise-linear function 

fitting variant to these same reinforcement learning problems. Given the 

relatively good results on supervised learning tasks, we expect to be 

able to outperform ICNNs.

https://deepmind.com/blog/producing-flexible-behaviours-simulated-environments/

