
Convex Functions for Reinforcement Learning
Siddartha Devic, Yuqiao Chen, Gregory Van Buskirk, Benjamin Raichel*, Nicholas Ruozzi*

Computer Science Dept., The University of Texas at Dallas

II. Reinforcement Learning

IV. Convex Function Fitting VI. Evaluation and Results

Figure 3 (Left): A simple neural network. Figure 4 (Right): Example non-convex loss

function of a neural network.

Figure 1 (Left): DeepMind’s simulated human agent learns to run and avoid

obstacles/falling (source: https://deepmind.com/blog/producing-flexible-behaviours-

simulated-environments/). Figure 2 (Right): The agent-environment feedback loop (source:

https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html)

Figure 6: (Left, Inverted Pendulum)

The agent can choose to move the

platform left or right at each state,

attempting to balance the pole

without falling. (Above, Half-cheetah)

We apply torque to joints and

maximize distance traveled.

VII. Acknowledgements

Thank you to Prof. Ruozzi, who graciously takes the time to meet with me each

week, and points me in new directions with each failure. I would also like to thank

Yuqiao, Greg, and Prof. Raichel for the many informative and interesting

conversations that have defined my year.

Generally, reinforcement learning concerns an agent interacting with an

environment to complete a task. Surprisingly many problems may fall

into the reinforcement learning paradigm. Some notable examples

include Google DeepMind training a simulated human how to run around

obstacles (Figure 1), a reinforcement learning agent learning to optimize

chemical reactions and outperform state of the art methods, and news

recommendation systems.

In practice, agents are part of the state, action, reward cycle presented

in Figure 2. For example, in the case of the running human problem

(Figure 1), the state description would be the position and velocity of

each joint. An agent applies an action, in this case torque to each joint,

and will then receive a reward proportional to how far the human moves

and how little energy was expended. The agent receives a new state,

and the process repeats. Eventually, the agent learns to maximize the

sum of the rewards at each time step over a finite “episode”.

I. Introduction

We introduce a convex function approximator that has provable

convergence in Q-learning, a highly applicable model for reinforcement

learning. We present our results on a variety of reinforcement learning

tasks, and show promising initial results when compared to naively-built

“Input Convex Neural Networks”.

Convex functions are functions where the tangent line lies below the

function at every point. They have the special property that any critical

point of the function is guaranteed to be a global minimum or maximum.

Unfortunately, training neural networks requires “optimizing” (finding the

minimum) of non-convex functions, but we cannot guarantee that any

local minimum we arrive at will be a global minimum (Figure 4).

Piecewise-linear functions are both interpretable and fast, removing the

black box nature surrounding neural networks. Boyd [1] gives us a

quadratic program to fit the best convex piecewise-linear function,

however this is intractable for reinforcement learning. We instead

develop a stochastic method to learn the best convex piecewise-linear

function to a given set of data. Furthermore, our method provably*

converges in the Q-learning setting ([2], V). We begin by computing the

convex lower hull, and projecting all points onto it. We then iteratively

move our hull upwards, maintaining convexity at each step (Figure 5).

V. Deep Q-Learning

Q-learning is an approach to reinforcement learning where the agent

attempts to learn the long term value (Q-function) of a particular state-

action pair. The Q-update rule is defined as:

We iterate hundreds of thousands of times in an attempt to learn regions

of high and low Q-values. Once training is complete, the agent simply

takes actions, maximizing Q-values at each step.

We first compare an iterative version of Boyd’s algorithm (cvx-fit) against

a single layer neural network (NN) on certain regression tasks:

The high performance of the cvx-fit algorithm implies that our stochastic

variant may perform well on more complex tasks, where cvx-fit is

intractable.

We implement the convex-neural network analogue, “fully input convex

neural networks (ICNNs)” [3]. Although ICNNs are a good first step in

exploring convexity in deep reinforcement learning, we believe that we

can outperform them in the Q-learning setting using our simple convex

function approximator. Our results are obtained from a reinforcement

learning simulation library called openai-gym. The tasks we evaluate our

method on are inverted pendulum and half-cheetah (Figure 6).

VIII. Citations

[1]: Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge

University Press, New York, NY, USA, 2004.

[2]: G. J. Gordon, “Stable Function Approximation in Dynamic

Programming,” Machine Learning Proceedings 1995, pp. 261–268, 1995.

[3]: Brandon Amos, Lei Xu, and J. Zico Kolter. Input convex neural networks.

CoRR, abs/1609.07152, 2016.

III. Neural Networks

Neural networks are comprised of thousands of nodes and weighted

connections between these nodes that attempt to accurately predict an

output given a certain input (Figure 3). Neural networks in computer

science are loosely modeled after those in the human brain, where each

portion of the input is weighted and considered differently. However, in

computer science they are simply trained to perform well on a single

prediction task and do not have any general intelligence.

Recently, computational advancements have made neural networks

tractable for a large subset of machine learning problems, including

certain types of reinforcement learning.

Figure 5: We begin with the convex lower hull (Left), and iteratively move our fit upwards

to obtain the best convex-piecewise linear function (Right, 750 iterations).

Note: NaN means non-convergent. The ICNN cannot learn to perform

well due to the assumption of convexity in the Q-Function.

Our next step is to apply our stochastic convex piecewise-linear function

fitting variant to these same reinforcement learning problems. Given the

relatively good results on supervised learning tasks, we expect to be

able to outperform ICNNs.

https://deepmind.com/blog/producing-flexible-behaviours-simulated-environments/

